IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024350.html
   My bibliography  Save this article

An analytical method for quickly evaluating the performances of refractory alloys in sCO2 Brayton cycle applications

Author

Listed:
  • Yang, Jiaqi
  • Ma, Yuan
  • Wang, Wujun

Abstract

An analytical method has been developed to quickly evaluate structure materials' performances in sCO2 power cycle applications. This analytical method combines a conjugate heat transfer model for a tube with constant heat flux boundary conditions with its corresponding mechanical model to obtain the allowable working fluid temperatures and minimum required wall thickness. Three refractory alloys, Inconel 617, Haynes 230, and SS 253 MA, have been selected for implementing this analytical method by comparing their allowable working fluid temperatures and minimum required wall thicknesses under various boundary conditions. The allowable working fluid temperature has been observed not to change with the external surface temperature of the tube monotonically but with a peak. In general, Nickel based alloys (Inconel 617 and Haynes 230) have better performances than the SS 253 MA, but the difference becomes insignificant for low working fluid temperature and low heat flux applications. Besides, Inconel 617 can offer slightly higher allowable working fluid temperature than Haynes 230 in most work conditions, but the minimum required wall thickness is also significantly larger than that of Haynes 230. In addition, the minimum required wall thickness can be significantly reduced when the allowable working fluid temperature is set slightly lower than its peak value due to the rapid decrease of the maximum allowable stresses at high temperatures, which will be useful in potential techno-economic optimization for heat exchanger designs.

Suggested Citation

  • Yang, Jiaqi & Ma, Yuan & Wang, Wujun, 2023. "An analytical method for quickly evaluating the performances of refractory alloys in sCO2 Brayton cycle applications," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024350
    DOI: 10.1016/j.energy.2023.129041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.