IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v215y2021ipas0360544220322210.html
   My bibliography  Save this article

Latest progress on nanotechnology aided boiling heat transfer enhancement: A review

Author

Listed:
  • Chen, Jingtan
  • Ahmad, Shakeel
  • Cai, Junjie
  • Liu, Huaqiang
  • Lau, Kwun Ting
  • Zhao, Jiyun

Abstract

Boiling heat transfer has drawn continuous attention owing to its wide range of applications in the energy fields. In the boiling process, the heat transfer coefficient (HTC) enhancement is needed for better energy conversion efficiency, and the critical heat flux (CHF) enhancement is needed to avoid boiling crises. With the advancement of nanotechnology, nanoscale surface modifications and nanofluids have shown great boiling enhancement potential. Furthermore, the coupled methods, which refer to the adoption of more than one method for boiling heat transfer enhancement, provide a novel way for possibly enhancing the HTC and CHF simultaneously. This work aims to provide the latest review of boiling enhancement using nanotechnology and its coupled methods. The nanotechnology-based methods on boiling enhancement including nanoscale modified surfaces and nanofluids are summarized. Furthermore, different coupled methods, including (a) hybrid nanofluids; (b) combined methods of using both nanofluid and surface modification; (c) bi-feature surfaces with multi-wettability (biphilic), multi-material, or multi-scale coating for surface modification, are discussed. Biphilic surfaces refer to surfaces with both hydrophilic and hydrophobic regions. Multi-materials surfaces refer to surfaces adopting two coating materials in the fabrication process, and multi-scale surfaces refer to nano/micro-scale surfaces in this review. The CHF and the HTC enhancement of pool and flow boiling are discussed, and conclusions and recommendations for future work are presented.

Suggested Citation

  • Chen, Jingtan & Ahmad, Shakeel & Cai, Junjie & Liu, Huaqiang & Lau, Kwun Ting & Zhao, Jiyun, 2021. "Latest progress on nanotechnology aided boiling heat transfer enhancement: A review," Energy, Elsevier, vol. 215(PA).
  • Handle: RePEc:eee:energy:v:215:y:2021:i:pa:s0360544220322210
    DOI: 10.1016/j.energy.2020.119114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220322210
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Xiande & Chen, Yafeng & Zhang, Helei & Chen, Weiwei & Dong, Anqi & Wang, Run, 2016. "Heat transfer and critical heat flux of nanofluid boiling: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 924-940.
    2. Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
    3. Jothi Prakash, C.G. & Prasanth, R., 2018. "Enhanced boiling heat transfer by nano structured surfaces and nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4028-4043.
    4. Alam, Tabish & Kim, Man-Hoe, 2018. "A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 813-839.
    5. Navdeep Singh Dhillon & Jacopo Buongiorno & Kripa K. Varanasi, 2015. "Critical heat flux maxima during boiling crisis on textured surfaces," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
    6. Shoukat A. Khan & Muataz A. Atieh & Muammer Koç, 2018. "Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-30, November.
    7. Sundar, L. Syam & Sharma, K.V. & Singh, Manoj K. & Sousa, A.C.M., 2017. "Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 185-198.
    8. Dadhich, Manish & Prajapati, Om Shankar, 2019. "A brief review on factors affecting flow and pool boiling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 607-625.
    9. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    10. Leong, K.Y. & Ku Ahmad, K.Z. & Ong, Hwai Chyuan & Ghazali, M.J. & Baharum, Azizah, 2017. "Synthesis and thermal conductivity characteristic of hybrid nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 868-878.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evgeny A. Chinnov & Sergey Ya. Khmel & Victor Yu. Vladimirov & Aleksey I. Safonov & Vitaliy V. Semionov & Kirill A. Emelyanenko & Alexandre M. Emelyanenko & Ludmila B. Boinovich, 2022. "Boiling Heat Transfer Enhancement on Biphilic Surfaces," Energies, MDPI, vol. 15(19), pages 1-19, October.
    2. Genbach, A.A. & Beloev, H.I. & Bondartsev, D. Yu & Genbach, N.A., 2022. "Boiling crisis in porous structures," Energy, Elsevier, vol. 259(C).
    3. Denis Kuznetsov & Aleksandr Pavlenko, 2022. "Heat Transfer during Nitrogen Boiling on Surfaces Modified by Microarc Oxidation," Energies, MDPI, vol. 15(16), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yalong & Tang, Yong & Zhang, Shiwei & Yuan, Wei & Tang, Heng, 2022. "A review on fabrication and pool boiling enhancement of three-dimensional complex structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Li, Wei & Dai, Renkun & Zeng, Min & Wang, Qiuwang, 2020. "Review of two types of surface modification on pool boiling enhancement: Passive and active," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. Hesam Moghadasi & Navid Malekian & Hamid Saffari & Amir Mirza Gheitaghy & Guo Qi Zhang, 2020. "Recent Advances in the Critical Heat Flux Amelioration of Pool Boiling Surfaces Using Metal Oxide Nanoparticle Deposition," Energies, MDPI, vol. 13(15), pages 1-49, August.
    5. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    6. Hak Rae Cho & Su Cheong Park & Doyeon Kim & Hyeong-min Joo & Dong In Yu, 2021. "Experimental Study on Pool Boiling on Hydrophilic Micro/Nanotextured Surfaces with Hydrophobic Patterns," Energies, MDPI, vol. 14(22), pages 1-13, November.
    7. He, Ziqiang & Yan, Yunfei & Zhang, Zhien, 2021. "Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review," Energy, Elsevier, vol. 216(C).
    8. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    9. Najiyah Safwa Khashi’ie & Norihan Md Arifin & Ioan Pop, 2020. "Mixed Convective Stagnation Point Flow towards a Vertical Riga Plate in Hybrid Cu-Al 2 O 3 /Water Nanofluid," Mathematics, MDPI, vol. 8(6), pages 1-21, June.
    10. Singh, Tejvir & Hussien, Muataz Ali Atieh & Al-Ansari, Tareq & Saoud, Khaled & McKay, Gordon, 2018. "Critical review of solar thermal resources in GCC and application of nanofluids for development of efficient and cost effective CSP technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 708-719.
    11. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    12. M. Z. Saghir & M. M. Rahman, 2020. "Forced Convection of Al 2 O 3 –Cu, TiO 2 –SiO 2 , FWCNT–Fe 3 O 4 , and ND–Fe 3 O 4 Hybrid Nanofluid in Porous Media," Energies, MDPI, vol. 13(11), pages 1-19, June.
    13. Firas A. Alwawi & Feras M. Al Faqih & Mohammed Z. Swalmeh & Mohd Asrul Hery Ibrahim, 2022. "Combined Convective Energy Transmission Performance of Williamson Hybrid Nanofluid over a Cylindrical Shape with Magnetic and Radiation Impressions," Mathematics, MDPI, vol. 10(17), pages 1-19, September.
    14. Hossain, Farzad & Karim, Md. Rezwanul & Bhuiyan, Arafat A., 2022. "A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems," Renewable Energy, Elsevier, vol. 188(C), pages 114-131.
    15. Jafari, Davoud & Wits, Wessel W., 2018. "The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 420-442.
    16. Zakir Khan & Zulfiqar Ahmad Khan, 2021. "Performance Evaluation of Coupled Thermal Enhancement through Novel Wire-Wound Fins Design and Graphene Nano-Platelets in Shell-and-Tube Latent Heat Storage System," Energies, MDPI, vol. 14(13), pages 1-21, June.
    17. Zhu, Yalin & Qin, Yaosong & Liang, Shuen & Chen, Keping & Tian, Chunrong & Wang, Jianhua & Luo, Xuan & Zhang, Lin, 2019. "Graphene/SiO2/n-octadecane nanoencapsulated phase change material with flower like morphology, high thermal conductivity, and suppressed supercooling," Applied Energy, Elsevier, vol. 250(C), pages 98-108.
    18. Hu, Yige & Wang, Hang & Chen, Hu & Ding, Yang & Liu, Changtian & Jiang, Feng & Ling, Xiang, 2023. "A novel hydrated salt-based phase change material for medium- and low-thermal energy storage," Energy, Elsevier, vol. 274(C).
    19. Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Samah Hamze & David Cabaleiro & Dominique Bégin & Alexandre Desforges & Thierry Maré & Brigitte Vigolo & Luis Lugo & Patrice Estellé, 2020. "Volumetric Properties and Surface Tension of Few-Layer Graphene Nanofluids Based on a Commercial Heat Transfer Fluid," Energies, MDPI, vol. 13(13), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:215:y:2021:i:pa:s0360544220322210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.