IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7543-d677117.html
   My bibliography  Save this article

Experimental Study on Pool Boiling on Hydrophilic Micro/Nanotextured Surfaces with Hydrophobic Patterns

Author

Listed:
  • Hak Rae Cho

    (Department of Mechanical Design Engineering, Pukyong National University, Busan 48513, Korea)

  • Su Cheong Park

    (Department of Mechanical Design Engineering, Pukyong National University, Busan 48513, Korea)

  • Doyeon Kim

    (Department of Mechanical Design Engineering, Pukyong National University, Busan 48513, Korea)

  • Hyeong-min Joo

    (Department of Nuclear Engineering, Hanyang University, Seoul 04763, Korea)

  • Dong In Yu

    (Department of Mechanical Design Engineering, Pukyong National University, Busan 48513, Korea)

Abstract

Over the past decades, pool boiling on various wetting surfaces has been intensively investigated to enhance boiling heat transfer and critical heat flux. In this study, to enhance the two thermal performances simultaneously, we developed hydrophilic micro/nanotextured surfaces with hydrophobic patterns. Using a silicon substrate, well-arrayed microtextures and randomly arrayed nanotextures were fabricated hierarchically using micro/nanoelectromechanical system processes. The top of the microtextures was coated locally with hydrophobic characteristics using specific self-assembled monolayer coating methods. Based on experimental data, we postulate that the critical heat flux was enhanced by the capillary-induced flow between microtextures and that nanotextures with superhydrophilicity contribute to the delay of the critical heat flux by better wetting the dried area. Owing to the hydrophobicity at the top of the micropillars, the nucleate site density and boiling heat transfer increased.

Suggested Citation

  • Hak Rae Cho & Su Cheong Park & Doyeon Kim & Hyeong-min Joo & Dong In Yu, 2021. "Experimental Study on Pool Boiling on Hydrophilic Micro/Nanotextured Surfaces with Hydrophobic Patterns," Energies, MDPI, vol. 14(22), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7543-:d:677117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7543/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7543/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Navdeep Singh Dhillon & Jacopo Buongiorno & Kripa K. Varanasi, 2015. "Critical heat flux maxima during boiling crisis on textured surfaces," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
    2. Fang, Xiande & Chen, Yafeng & Zhang, Helei & Chen, Weiwei & Dong, Anqi & Wang, Run, 2016. "Heat transfer and critical heat flux of nanofluid boiling: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 924-940.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jingtan & Ahmad, Shakeel & Cai, Junjie & Liu, Huaqiang & Lau, Kwun Ting & Zhao, Jiyun, 2021. "Latest progress on nanotechnology aided boiling heat transfer enhancement: A review," Energy, Elsevier, vol. 215(PA).
    2. Sun, Yalong & Tang, Yong & Zhang, Shiwei & Yuan, Wei & Tang, Heng, 2022. "A review on fabrication and pool boiling enhancement of three-dimensional complex structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2017. "Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system," Applied Energy, Elsevier, vol. 206(C), pages 1446-1463.
    4. Wei-Tao Wu & Mehrdad Massoudi & Hongbin Yan, 2017. "Heat Transfer and Flow of Nanofluids in a Y-Type Intersection Channel with Multiple Pulsations: A Numerical Study," Energies, MDPI, vol. 10(4), pages 1-18, April.
    5. Li, Wei & Dai, Renkun & Zeng, Min & Wang, Qiuwang, 2020. "Review of two types of surface modification on pool boiling enhancement: Passive and active," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    6. Yuan, Xiao & Du, Yanping & Su, Jing, 2022. "Approaches and potentials for pool boiling enhancement with superhigh heat flux on responsive smart surfaces: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Hesam Moghadasi & Navid Malekian & Hamid Saffari & Amir Mirza Gheitaghy & Guo Qi Zhang, 2020. "Recent Advances in the Critical Heat Flux Amelioration of Pool Boiling Surfaces Using Metal Oxide Nanoparticle Deposition," Energies, MDPI, vol. 13(15), pages 1-49, August.
    8. Mohd Danish & Mohammed K. Al Mesfer & Khursheed B. Ansari & Mudassir Hasan & Abdelfattah Amari & Babar Azeem, 2021. "Predicting Conduction Heat Flux through Macrolayer in Nucleate Pool Boiling," Energies, MDPI, vol. 14(13), pages 1-13, June.
    9. Rui, Ziliang & Sun, Hong & Ma, Jie & Peng, Hao, 2023. "Experimental study and prediction on the thermal management performance of SDS aqueous solution based microchannel flow boiling system," Energy, Elsevier, vol. 282(C).
    10. Wang, Xianling & Luo, Liang & Xiang, Jinwei & Zheng, Senlin & Shittu, Samson & Wang, Zhangyuan & Zhao, Xudong, 2021. "A comprehensive review on the application of nanofluid in heat pipe based on the machine learning: Theory, application and prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Jothi Prakash, C.G. & Prasanth, R., 2018. "Enhanced boiling heat transfer by nano structured surfaces and nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4028-4043.
    12. Tian, Zhen & Qi, Zhixin & Gan, Wanlong & Tian, Molin & Gao, Wenzhong, 2022. "A novel negative carbon-emission, cooling, and power generation system based on combined LNG regasification and waste heat recovery: Energy, exergy, economic, environmental (4E) evaluations," Energy, Elsevier, vol. 257(C).
    13. Tang, Heng & Xia, Liangfeng & Tang, Yong & Weng, Changxing & Hu, Zuohuan & Wu, Xiaoyu & Sun, Yalong, 2022. "Fabrication and pool boiling performance assessment of microgroove array surfaces with secondary micro-structures for high power applications," Renewable Energy, Elsevier, vol. 187(C), pages 790-800.
    14. Zhang, Ji & Zhu, Xiaowei & Mondejar, Maria E. & Haglind, Fredrik, 2019. "A review of heat transfer enhancement techniques in plate heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 305-328.
    15. Limiao Zhang & Chi Wang & Guanyu Su & Artyom Kossolapov & Gustavo Matana Aguiar & Jee Hyun Seong & Florian Chavagnat & Bren Phillips & Md Mahamudur Rahman & Matteo Bucci, 2023. "A unifying criterion of the boiling crisis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Wenming Li & Siyan Yang & Yongping Chen & Chen Li & Zuankai Wang, 2023. "Tesla valves and capillary structures-activated thermal regulator," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7543-:d:677117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.