IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v178y2016icp126-141.html
   My bibliography  Save this article

Improved gas heaters for supercritical CO2 Rankine cycles: Considerations on forced and mixed convection heat transfer enhancement

Author

Listed:
  • Li, Zhouhang
  • Tang, Guoli
  • Wu, Yuxin
  • Zhai, Yuling
  • Xu, Jianxin
  • Wang, Hua
  • Lu, Junfu

Abstract

To improve heat transfer performance of the gas heater in the supercritical CO2 Rankine cycle, heat transfer characteristics of supercritical CO2 heated in Internally Ribbed Tubes (IRT) was experimentally and numerically investigated over a wide range of buoyancy effect. Experiments reveal that for IRT with a geometric parameter of β=109, serious local heat transfer deterioration did not occur and buoyancy consistently improved heat transfer. IRT showed far superior performance over smooth tubes. Empirical Nusselt correlations were recommended for both upward and downward flows. A numerical model was then developed and verified against experimental data from IRT with different geometries. Further numerical studies on 7 different IRT demonstrate that buoyancy effect relates closely to rib geometries. For IRT with β=0.48–4, heat transfer to supercritical CO2 in upward flow was impaired when Bo is around 10−4, though the impairment became weaker as β increased. When β reached 16, buoyancy-induced impairment disappeared and Nusselt number increased gradually as buoyancy became stronger. Further increase in β up to 109 didn’t lead to obvious heat transfer enhancement of supercritical CO2, indicating that rib geometries play a smaller role in heat transfer than buoyancy for IRT with β>16. Finally, design strategy for IRT was provided for the optimization of gas heaters.

Suggested Citation

  • Li, Zhouhang & Tang, Guoli & Wu, Yuxin & Zhai, Yuling & Xu, Jianxin & Wang, Hua & Lu, Junfu, 2016. "Improved gas heaters for supercritical CO2 Rankine cycles: Considerations on forced and mixed convection heat transfer enhancement," Applied Energy, Elsevier, vol. 178(C), pages 126-141.
  • Handle: RePEc:eee:appene:v:178:y:2016:i:c:p:126-141
    DOI: 10.1016/j.apenergy.2016.06.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916307930
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.06.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Habka, Muhsen & Ajib, Salman, 2015. "Evaluation of mixtures performances in Organic Rankine Cycle when utilizing the geothermal water with and without cogeneration," Applied Energy, Elsevier, vol. 154(C), pages 567-576.
    2. Wang, Xurong & Dai, Yiping, 2016. "Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study," Applied Energy, Elsevier, vol. 170(C), pages 193-207.
    3. Liu, Qiang & Duan, Yuanyuan & Yang, Zhen, 2014. "Effect of condensation temperature glide on the performance of organic Rankine cycles with zeotropic mixture working fluids," Applied Energy, Elsevier, vol. 115(C), pages 394-404.
    4. Li, Chennan & Besarati, Saeb & Goswami, Yogi & Stefanakos, Elias & Chen, Huijuan, 2013. "Reverse osmosis desalination driven by low temperature supercritical organic rankine cycle," Applied Energy, Elsevier, vol. 102(C), pages 1071-1080.
    5. Xu, Jinliang & Liu, Chao, 2013. "Effect of the critical temperature of organic fluids on supercritical pressure Organic Rankine Cycles," Energy, Elsevier, vol. 63(C), pages 109-122.
    6. Sarkar, Jahar, 2015. "Analyses and optimization of a supercritical N2O Rankine cycle for low-grade heat conversion," Energy, Elsevier, vol. 81(C), pages 344-351.
    7. Collings, Peter & Yu, Zhibin & Wang, Enhua, 2016. "A dynamic organic Rankine cycle using a zeotropic mixture as the working fluid with composition tuning to match changing ambient conditions," Applied Energy, Elsevier, vol. 171(C), pages 581-591.
    8. Vivian, Jacopo & Manente, Giovanni & Lazzaretto, Andrea, 2015. "A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources," Applied Energy, Elsevier, vol. 156(C), pages 727-746.
    9. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    10. Huang, Dan & Wu, Zan & Sunden, Bengt & Li, Wei, 2016. "A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress," Applied Energy, Elsevier, vol. 162(C), pages 494-505.
    11. Liu, Qiang & Shen, Aijing & Duan, Yuanyuan, 2015. "Parametric optimization and performance analyses of geothermal organic Rankine cycles using R600a/R601a mixtures as working fluids," Applied Energy, Elsevier, vol. 148(C), pages 410-420.
    12. Chen, Huijuan & Goswami, D. Yogi & Rahman, Muhammad M. & Stefanakos, Elias K., 2011. "A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power," Energy, Elsevier, vol. 36(1), pages 549-555.
    13. Yun, Eunkoo & Kim, Dokyun & Yoon, Sang Youl & Kim, Kyung Chun, 2015. "Experimental investigation of an organic Rankine cycle with multiple expanders used in parallel," Applied Energy, Elsevier, vol. 145(C), pages 246-254.
    14. Yang, Xufei & Xu, Jinliang & Miao, Zheng & Zou, Jinghuang & Qi, Fengliang, 2016. "The definition of non-dimensional integration temperature difference and its effect on organic Rankine cycle," Applied Energy, Elsevier, vol. 167(C), pages 17-33.
    15. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zhouhang & Zhai, Yuling & Bi, Dapeng & Li, Kongzhai & Wang, Hua & Lu, Junfu, 2017. "Orientation effect in helical coils with smooth and rib-roughened wall: Toward improved gas heaters for supercritical carbon dioxide Rankine cycles," Energy, Elsevier, vol. 140(P1), pages 530-545.
    2. Liu, Xinxin & Xu, Xiaoxiao & Liu, Chao & Bai, Wanjin & Dang, Chaobin, 2018. "Heat transfer deterioration in helically coiled heat exchangers in trans-critical CO2 Rankine cycles," Energy, Elsevier, vol. 147(C), pages 1-14.
    3. Xiaojing Zhu & Ruizeng Zhang & Xiao Yu & Maoguo Cao & Yongxiang Ren, 2020. "Numerical Study on the Gravity Effect on Heat Transfer of Supercritical CO 2 in a Vertical Tube," Energies, MDPI, vol. 13(13), pages 1-20, July.
    4. Liu, Yun & Dong, Yue & Li, Tao & Zhang, Chuan-Zhi, 2022. "Performance analysis and comparison of different corrugated structures and a novel alternative elliptical twisted tube in supercritical CO2 tower solar receivers," Renewable Energy, Elsevier, vol. 199(C), pages 1523-1533.
    5. Sławomir Grądziel & Karol Majewski, 2019. "Experimental Determination of the Friction Factor in a Tube with Internal Helical Ribs," Energies, MDPI, vol. 12(2), pages 1-17, January.
    6. Santini, Lorenzo & Accornero, Carlo & Cioncolini, Andrea, 2016. "On the adoption of carbon dioxide thermodynamic cycles for nuclear power conversion: A case study applied to Mochovce 3 Nuclear Power Plant," Applied Energy, Elsevier, vol. 181(C), pages 446-463.
    7. Wang, Dabiao & Tian, Ran & Zhang, Yue & Li, LanLan & Ma, Yuezheng & Shi, Lin & Li, Hui, 2019. "Heat transfer investigation of supercritical R134a for trans-critical organic Rankine cycle system," Energy, Elsevier, vol. 169(C), pages 542-557.
    8. Zhang, Shijie & Xu, Xiaoxiao & Liu, Chao & Dang, Chaobin, 2020. "A review on application and heat transfer enhancement of supercritical CO2 in low-grade heat conversion," Applied Energy, Elsevier, vol. 269(C).
    9. Wang, Yuan & Ren, Jing-Jie & Bi, Ming-Shu, 2023. "Analysis on the heat transfer performance of supercritical liquified natural gas in horizontal tubes during regasification process," Energy, Elsevier, vol. 262(PA).
    10. Li, Zhouhang & Zhai, Yuling & Li, Kongzhai & Wang, Hua & Lu, Junfu, 2016. "A quantitative study on the interaction between curvature and buoyancy effects in helically coiled heat exchangers of supercritical CO2 Rankine cycles," Energy, Elsevier, vol. 116(P1), pages 661-676.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Li, Jian & Liu, Qiang & Duan, Yuanyuan & Yang, Zhen, 2017. "Performance analysis of organic Rankine cycles using R600/R601a mixtures with liquid-separated condensation," Applied Energy, Elsevier, vol. 190(C), pages 376-389.
    3. Wang, Enhua & Yu, Zhibin & Collings, Peter, 2017. "Dynamic control strategy of a distillation system for a composition-adjustable organic Rankine cycle," Energy, Elsevier, vol. 141(C), pages 1038-1051.
    4. Magdalena Santos-Rodriguez, M. & Flores-Tlacuahuac, Antonio & Zavala, Victor M., 2017. "A stochastic optimization approach for the design of organic fluid mixtures for low-temperature heat recovery," Applied Energy, Elsevier, vol. 198(C), pages 145-159.
    5. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    6. Mohan, Sooraj & Dinesha, P. & Campana, Pietro Elia, 2022. "ANN-PSO aided selection of hydrocarbons as working fluid for low-temperature organic Rankine cycle and thermodynamic evaluation of optimal working fluid," Energy, Elsevier, vol. 259(C).
    7. Liu, Changwei & Gao, Tieyu, 2019. "Off-design performance analysis of basic ORC, ORC using zeotropic mixtures and composition-adjustable ORC under optimal control strategy," Energy, Elsevier, vol. 171(C), pages 95-108.
    8. Collings, Peter & Yu, Zhibin & Wang, Enhua, 2016. "A dynamic organic Rankine cycle using a zeotropic mixture as the working fluid with composition tuning to match changing ambient conditions," Applied Energy, Elsevier, vol. 171(C), pages 581-591.
    9. Qiang Liu & Ran Chen & Xinliu Yang & Xiao Xiao, 2023. "Thermodynamic Analyses of Sub- and Supercritical ORCs Using R1234yf, R236ea and Their Mixtures as Working Fluids for Geothermal Power Generation," Energies, MDPI, vol. 16(15), pages 1-22, July.
    10. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2022. "Thermo-mechanical energy level approach integrated with exergoeconomic optimization for realistic cost evaluation of a novel micro-CCHP system," Renewable Energy, Elsevier, vol. 190(C), pages 630-657.
    11. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    12. Li, Jian & Liu, Qiang & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Di, Jiawei, 2017. "Optimized liquid-separated thermodynamic states for working fluids of organic Rankine cycles with liquid-separated condensation," Energy, Elsevier, vol. 141(C), pages 652-660.
    13. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    14. Baccioli, A. & Antonelli, M. & Desideri, U., 2017. "Technical and economic analysis of organic flash regenerative cycles (OFRCs) for low temperature waste heat recovery," Applied Energy, Elsevier, vol. 199(C), pages 69-87.
    15. Satanphol, K. & Pridasawas, W. & Suphanit, B., 2017. "A study on optimal composition of zeotropic working fluid in an Organic Rankine Cycle (ORC) for low grade heat recovery," Energy, Elsevier, vol. 123(C), pages 326-339.
    16. Manente, Giovanni & Da Lio, Luca & Lazzaretto, Andrea, 2016. "Influence of axial turbine efficiency maps on the performance of subcritical and supercritical Organic Rankine Cycle systems," Energy, Elsevier, vol. 107(C), pages 761-772.
    17. Braimakis, Konstantinos & Mikelis, Angelos & Charalampidis, Antonios & Karellas, Sotirios, 2020. "Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery," Energy, Elsevier, vol. 203(C).
    18. Zhang, Shijie & Xu, Xiaoxiao & Liu, Chao & Liu, Xinxin & Zhang, Yadong & Dang, Chaobin, 2019. "The heat transfer of supercritical CO2 in helically coiled tube: Trade-off between curvature and buoyancy effect," Energy, Elsevier, vol. 176(C), pages 765-777.
    19. Moloney, Francesca & Almatrafi, Eydhah & Goswami, D.Y., 2020. "Working fluid parametric analysis for recuperative supercritical organic Rankine cycles for medium geothermal reservoir temperatures," Renewable Energy, Elsevier, vol. 147(P3), pages 2874-2881.
    20. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:178:y:2016:i:c:p:126-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.