IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v147y2018icp1-14.html
   My bibliography  Save this article

Heat transfer deterioration in helically coiled heat exchangers in trans-critical CO2 Rankine cycles

Author

Listed:
  • Liu, Xinxin
  • Xu, Xiaoxiao
  • Liu, Chao
  • Bai, Wanjin
  • Dang, Chaobin

Abstract

The heat transfer deterioration (HTD) of supercritical CO2 encountered in trans-critical CO2 Rankine cycle is an important issue related the safety of the whole unit. For the purpose, numerical simulations are performed to get a further insight into the mechanism of heat transfer characteristics of supercritical CO2 flow in helically coiled tube (HCT) both in horizontal and vertical orientations with parameters in a range of p = 8 MPa, G = 100–800 kg/m2s and q = 15–140 kW/m2. The Shear-Stress Transport (SST) k–ω turbulence model with enhanced wall treatment method is employed to handle the coupled wall-to-fluid heat transfer. Results show that secondary flow induced by the coil curvature produces a transverse transport of the fluid over the cross section of the pipe and therefore enhances the heat transfer. Additionally, in the vertical oriented HCT, the HTD at supercritical pressure observed in a smooth straight tube (ST) is significantly alleviated. At a higher q/G, the HTD still exists irrespective of coil orientations. But, different from ST, the HTD in HCT is caused by both gravitational and centrifugal buoyancy force. Therefore, the onset of HTD in HCT cannot be predicted by the empirical correlation (q = 0.0002G) derived from analytical and experimental results for ST. Based on numerical calculation, an improved buoyancy parameter is developed to predict buoyancy effect on vertical HCT with an internal upward flow.

Suggested Citation

  • Liu, Xinxin & Xu, Xiaoxiao & Liu, Chao & Bai, Wanjin & Dang, Chaobin, 2018. "Heat transfer deterioration in helically coiled heat exchangers in trans-critical CO2 Rankine cycles," Energy, Elsevier, vol. 147(C), pages 1-14.
  • Handle: RePEc:eee:energy:v:147:y:2018:i:c:p:1-14
    DOI: 10.1016/j.energy.2017.12.163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217322065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.12.163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xurong & Yang, Yi & Zheng, Ya & Dai, Yiping, 2017. "Exergy and exergoeconomic analyses of a supercritical CO2 cycle for a cogeneration application," Energy, Elsevier, vol. 119(C), pages 971-982.
    2. Xu, Jinliang & Liu, Chao, 2013. "Effect of the critical temperature of organic fluids on supercritical pressure Organic Rankine Cycles," Energy, Elsevier, vol. 63(C), pages 109-122.
    3. Negoescu, Ciprian Constantin & Li, Yongliang & Al-Duri, Bushra & Ding, Yulong, 2017. "Heat transfer behaviour of supercritical nitrogen in the large specific heat region flowing in a vertical tube," Energy, Elsevier, vol. 134(C), pages 1096-1106.
    4. Li, Zhouhang & Zhai, Yuling & Li, Kongzhai & Wang, Hua & Lu, Junfu, 2016. "A quantitative study on the interaction between curvature and buoyancy effects in helically coiled heat exchangers of supercritical CO2 Rankine cycles," Energy, Elsevier, vol. 116(P1), pages 661-676.
    5. Xu, Xiao Xiao & Liu, Chao & Fu, Xiang & Gao, Hong & Li, Yourong, 2015. "Energy and exergy analyses of a modified combined cooling, heating, and power system using supercritical CO2," Energy, Elsevier, vol. 86(C), pages 414-422.
    6. Shu, Gequn & Shi, Lingfeng & Tian, Hua & Deng, Shuai & Li, Xiaoya & Chang, Liwen, 2017. "Configurations selection maps of CO2-based transcritical Rankine cycle (CTRC) for thermal energy management of engine waste heat," Applied Energy, Elsevier, vol. 186(P3), pages 423-435.
    7. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    8. Huang, Dan & Wu, Zan & Sunden, Bengt & Li, Wei, 2016. "A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress," Applied Energy, Elsevier, vol. 162(C), pages 494-505.
    9. Naphon, Paisarn & Wongwises, Somchai, 2006. "A review of flow and heat transfer characteristics in curved tubes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 463-490, October.
    10. Li, Zhouhang & Tang, Guoli & Wu, Yuxin & Zhai, Yuling & Xu, Jianxin & Wang, Hua & Lu, Junfu, 2016. "Improved gas heaters for supercritical CO2 Rankine cycles: Considerations on forced and mixed convection heat transfer enhancement," Applied Energy, Elsevier, vol. 178(C), pages 126-141.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Yecheng & Zhu, Qi’an & Li, Zhouhang, 2020. "Performance of helically coiled gas heaters in supercritical CO2 Rankine cycles: A detailed assessment under convective boundary condition," Energy, Elsevier, vol. 195(C).
    2. Włodarski, Wojciech, 2018. "Experimental investigations and simulations of the microturbine unit with permanent magnet generator," Energy, Elsevier, vol. 158(C), pages 59-71.
    3. Zhang, Shijie & Xu, Xiaoxiao & Liu, Chao & Dang, Chaobin, 2020. "A review on application and heat transfer enhancement of supercritical CO2 in low-grade heat conversion," Applied Energy, Elsevier, vol. 269(C).
    4. Wajs, Jan & Mikielewicz, Dariusz & Jakubowska, Blanka, 2018. "Performance of the domestic micro ORC equipped with the shell-and-tube condenser with minichannels," Energy, Elsevier, vol. 157(C), pages 853-861.
    5. Xinxin Liu & Shuoshuo Li & Liang Liu & Chao He & Zhuang Sun & Faruk Özdemir & Muhammad Aziz & Po-Chih Kuo, 2022. "Research Progress on Convective Heat Transfer Characteristics of Supercritical Fluids in Curved Tube," Energies, MDPI, vol. 15(22), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shijie & Xu, Xiaoxiao & Liu, Chao & Dang, Chaobin, 2020. "A review on application and heat transfer enhancement of supercritical CO2 in low-grade heat conversion," Applied Energy, Elsevier, vol. 269(C).
    2. Zhang, Shijie & Xu, Xiaoxiao & Liu, Chao & Liu, Xinxin & Zhang, Yadong & Dang, Chaobin, 2019. "The heat transfer of supercritical CO2 in helically coiled tube: Trade-off between curvature and buoyancy effect," Energy, Elsevier, vol. 176(C), pages 765-777.
    3. Li, Zhouhang & Tang, Guoli & Wu, Yuxin & Zhai, Yuling & Xu, Jianxin & Wang, Hua & Lu, Junfu, 2016. "Improved gas heaters for supercritical CO2 Rankine cycles: Considerations on forced and mixed convection heat transfer enhancement," Applied Energy, Elsevier, vol. 178(C), pages 126-141.
    4. Li, Zhouhang & Zhai, Yuling & Bi, Dapeng & Li, Kongzhai & Wang, Hua & Lu, Junfu, 2017. "Orientation effect in helical coils with smooth and rib-roughened wall: Toward improved gas heaters for supercritical carbon dioxide Rankine cycles," Energy, Elsevier, vol. 140(P1), pages 530-545.
    5. Xia, Jiaxi & Wang, Jiangfeng & Zhou, Kehan & Zhao, Pan & Dai, Yiping, 2018. "Thermodynamic and economic analysis and multi-objective optimization of a novel transcritical CO2 Rankine cycle with an ejector driven by low grade heat source," Energy, Elsevier, vol. 161(C), pages 337-351.
    6. Wang, Yuan & Ren, Jing-Jie & Bi, Ming-Shu, 2023. "Analysis on the heat transfer performance of supercritical liquified natural gas in horizontal tubes during regasification process," Energy, Elsevier, vol. 262(PA).
    7. Kravanja, Gregor & Zajc, Gašper & Knez, Željko & Škerget, Mojca & Marčič, Simon & Knez, Maša H., 2018. "Heat transfer performance of CO2, ethane and their azeotropic mixture under supercritical conditions," Energy, Elsevier, vol. 152(C), pages 190-201.
    8. Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
    9. Li, Xiaoya & Shu, Gequn & Tian, Hua & Shi, Lingfeng & Huang, Guangdai & Chen, Tianyu & Liu, Peng, 2017. "Preliminary tests on dynamic characteristics of a CO2 transcritical power cycle using an expansion valve in engine waste heat recovery," Energy, Elsevier, vol. 140(P1), pages 696-707.
    10. Cao, Yue & Rattner, Alexander S. & Dai, Yiping, 2018. "Thermoeconomic analysis of a gas turbine and cascaded CO2 combined cycle using thermal oil as an intermediate heat-transfer fluid," Energy, Elsevier, vol. 162(C), pages 1253-1268.
    11. Yao, Yecheng & Zhu, Qi’an & Li, Zhouhang, 2020. "Performance of helically coiled gas heaters in supercritical CO2 Rankine cycles: A detailed assessment under convective boundary condition," Energy, Elsevier, vol. 195(C).
    12. Fan, Gang & Li, Hang & Du, Yang & Zheng, Shaoxiong & Chen, Kang & Dai, Yiping, 2020. "Preliminary conceptual design and thermo-economic analysis of a combined cooling, heating and power system based on supercritical carbon dioxide cycle," Energy, Elsevier, vol. 203(C).
    13. Wang, Dabiao & Tian, Ran & Zhang, Yue & Li, LanLan & Ma, Yuezheng & Shi, Lin & Li, Hui, 2019. "Heat transfer investigation of supercritical R134a for trans-critical organic Rankine cycle system," Energy, Elsevier, vol. 169(C), pages 542-557.
    14. Xinxin Liu & Shuoshuo Li & Liang Liu & Chao He & Zhuang Sun & Faruk Özdemir & Muhammad Aziz & Po-Chih Kuo, 2022. "Research Progress on Convective Heat Transfer Characteristics of Supercritical Fluids in Curved Tube," Energies, MDPI, vol. 15(22), pages 1-23, November.
    15. Gequn Shu & Chen Hu & Hua Tian & Xiaoya Li & Zhigang Yu & Mingtao Wang, 2019. "Analysis and Optimization of Coupled Thermal Management Systems Used in Vehicles," Energies, MDPI, vol. 12(7), pages 1-17, April.
    16. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    17. Li, Xiaoya & Tian, Hua & Shu, Gequn & Zhao, Mingru & Markides, Christos N. & Hu, Chen, 2019. "Potential of carbon dioxide transcritical power cycle waste-heat recovery systems for heavy-duty truck engines," Applied Energy, Elsevier, vol. 250(C), pages 1581-1599.
    18. Muhammad, Hafiz Ali & Cho, Junhyun & Cho, Jongjae & Choi, Bongsu & Roh, Chulwoo & Ishfaq, Hafiz Ahmad & Lee, Gilbong & Shin, Hyungki & Baik, Young-Jin & Lee, Beomjoon, 2022. "Performance improvement of supercritical carbon dioxide power cycle at elevated heat sink temperatures," Energy, Elsevier, vol. 239(PD).
    19. Mikielewicz, Dariusz & Mikielewicz, Jarosław, 2020. "Modelling of heat transfer in supercritical pressure recuperators," Energy, Elsevier, vol. 207(C).
    20. Lingfeng Shi & Gequn Shu & Hua Tian & Guangdai Huang & Liwen Chang & Tianyu Chen & Xiaoya Li, 2017. "Ideal Point Design and Operation of CO 2 -Based Transcritical Rankine Cycle (CTRC) System Based on High Utilization of Engine’s Waste Heats," Energies, MDPI, vol. 10(11), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:147:y:2018:i:c:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.