Assessment on energy and exergy of combined supercritical CO2 Brayton cycles with sizing printed-circuit-heat-exchangers
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.125559
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Muhammad, Hafiz Ali & Cho, Junhyun & Cho, Jongjae & Choi, Bongsu & Roh, Chulwoo & Ishfaq, Hafiz Ahmad & Lee, Gilbong & Shin, Hyungki & Baik, Young-Jin & Lee, Beomjoon, 2022. "Performance improvement of supercritical carbon dioxide power cycle at elevated heat sink temperatures," Energy, Elsevier, vol. 239(PD).
- Armanto P. Simanjuntak & Jae-Young Lee, 2020. "Mechanical Integrity Assessment of Two-Side Etched Type Printed Circuit Heat Exchanger with Additional Elliptical Channel," Energies, MDPI, vol. 13(18), pages 1-17, September.
- Larsen, Ulrik & Nguyen, Tuong-Van & Knudsen, Thomas & Haglind, Fredrik, 2014. "System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines," Energy, Elsevier, vol. 64(C), pages 484-494.
- Liu, Yaping & Wang, Ying & Huang, Diangui, 2019. "Supercritical CO2 Brayton cycle: A state-of-the-art review," Energy, Elsevier, vol. 189(C).
- Chen, Kang & Zheng, Shaoxiong & Du, Yang & Fan, Gang & Dai, Yiping & Chen, Haichao, 2021. "Thermodynamic and economic comparison of novel parallel and serial combined cooling and power systems based on sCO2 cycle," Energy, Elsevier, vol. 215(PA).
- Zhou, Aozheng & Li, Xue-song & Ren, Xiao-dong & Song, Jian & Gu, Chun-wei, 2020. "Thermodynamic and economic analysis of a supercritical carbon dioxide (S–CO2) recompression cycle with the radial-inflow turbine efficiency prediction," Energy, Elsevier, vol. 191(C).
- Jiang, Yuan & Liese, Eric & Zitney, Stephen E. & Bhattacharyya, Debangsu, 2018. "Design and dynamic modeling of printed circuit heat exchangers for supercritical carbon dioxide Brayton power cycles," Applied Energy, Elsevier, vol. 231(C), pages 1019-1032.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Khoshvaght-Aliabadi, Morteza & Ghodrati, Parvaneh & Mahian, Omid & Kang, Yong Tae, 2024. "Performance evaluation of non-uniform twisted designs in precooler of supercritical CO2 power cycle," Energy, Elsevier, vol. 292(C).
- Zhang, Enbo & Watanabe, Toshinori & Lai, Zitian & Bai, Bofeng, 2024. "A compressible flow solver for turbomachinery of the real gases with strongly variable properties," Energy, Elsevier, vol. 290(C).
- Liu, Zhongyan & Guan, Hongwei & Shao, Jiawei & Jin, Xu & Su, Wei & Zhang, Hao & Li, Heng & Sun, Dahan & Wei, Tengfei, 2024. "Thermodynamic and advanced exergy analysis of a trans-critical CO2 energy storage system integrated with heat supply and solar energy," Energy, Elsevier, vol. 302(C).
- Li, Zhen & Lu, Daogang & Wang, Zhichao & Cao, Qiong, 2023. "Analysis on flow and heat transfer performance of SCO2 in airfoil channels with different fin angles of attack," Energy, Elsevier, vol. 282(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2022. "A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle," Energy, Elsevier, vol. 246(C).
- Edwin Espinel Blanco & Guillermo Valencia Ochoa & Jorge Duarte Forero, 2020. "Thermodynamic, Exergy and Environmental Impact Assessment of S-CO 2 Brayton Cycle Coupled with ORC as Bottoming Cycle," Energies, MDPI, vol. 13(9), pages 1-24, May.
- Aofang Yu & Wen Su & Li Zhao & Xinxing Lin & Naijun Zhou, 2020. "New Knowledge on the Performance of Supercritical Brayton Cycle with CO 2 -Based Mixtures," Energies, MDPI, vol. 13(7), pages 1-23, April.
- Thanganadar, Dhinesh & Fornarelli, Francesco & Camporeale, Sergio & Asfand, Faisal & Patchigolla, Kumar, 2021. "Off-design and annual performance analysis of supercritical carbon dioxide cycle with thermal storage for CSP application," Applied Energy, Elsevier, vol. 282(PA).
- N Shankar Ganesh & T Srinivas & G Uma Maheswari & S Mahendiran & D Manivannan, 2019. "Development of optimized energy system," Energy & Environment, , vol. 30(7), pages 1190-1205, November.
- Zhu, Sipeng & Ma, Zetai & Zhang, Kun & Deng, Kangyao, 2020. "Energy and exergy analysis of the combined cycle power plant recovering waste heat from the marine two-stroke engine under design and off-design conditions," Energy, Elsevier, vol. 210(C).
- Ouyang, Tiancheng & Wang, Zhiping & Wang, Geng & Zhao, Zhongkai & Xie, Shutao & Li, Xiaoqing, 2021. "Advanced thermo-economic scheme and multi-objective optimization for exploiting the waste heat potentiality of marine natural gas engine," Energy, Elsevier, vol. 236(C).
- Zhang, Fengtao & Zhang, Jianyuan & You, Jinggang & Yang, Liyong & Wang, Wei & Luo, Qing & Jiao, Ligang & Liu, Zhengang & Jin, Quan & Wang, Hao, 2024. "Construction of multi-loop thermodynamic cycles: Methodology and case study," Energy, Elsevier, vol. 288(C).
- Moradpoor, Iraj & Ebrahimi, Masood, 2019. "Thermo-environ analyses of a novel trigeneration cycle based on clean technologies of molten carbonate fuel cell, stirling engine and Kalina cycle," Energy, Elsevier, vol. 185(C), pages 1005-1016.
- Marco Bicchi & Michele Marconcini & Ernani Fulvio Bellobuono & Elisabetta Belardini & Lorenzo Toni & Andrea Arnone, 2023. "Multi-Point Surrogate-Based Approach for Assessing Impacts of Geometric Variations on Centrifugal Compressor Performance," Energies, MDPI, vol. 16(4), pages 1-21, February.
- Ma, Teng & Li, Ming-Jia & Xu, Jin-Liang & Cao, Feng, 2019. "Thermodynamic analysis and performance prediction on dynamic response characteristic of PCHE in 1000 MW S-CO2 coal fired power plant," Energy, Elsevier, vol. 175(C), pages 123-138.
- Guo, Jiangfeng & Song, Jian & Han, Zengxiao & Pervunin, Konstantin S. & Markides, Christos N., 2022. "Investigation of the thermohydraulic characteristics of vertical supercritical CO2 flows at cooling conditions," Energy, Elsevier, vol. 256(C).
- Ma, Teng & Li, Ming-Jia & Xu, Hang, 2024. "Thermal energy storage capacity configuration and energy distribution scheme for a 1000MWe S–CO2 coal-fired power plant to realize high-efficiency full-load adjustability," Energy, Elsevier, vol. 294(C).
- Sleiti, Ahmad K. & Al-Ammari, Wahib A., 2021. "Off-design performance analysis of combined CSP power and direct oxy-combustion supercritical carbon dioxide cycles," Renewable Energy, Elsevier, vol. 180(C), pages 14-29.
- Jihoo Jung & Jehyun Lee & Sangjin Choi & Woonho Baek, 2022. "Information Analysis on Foreign Institution for International R&D Collaboration Using Natural Language Processing," Energies, MDPI, vol. 16(1), pages 1-17, December.
- Deng, Tianrui & Li, Xionghui & Wang, Qiuwang & Ma, Ting, 2019. "Dynamic modelling and transient characteristics of supercritical CO2 recompression Brayton cycle," Energy, Elsevier, vol. 180(C), pages 292-302.
- Ma, Hongting & Du, Na & Zhang, Zeyu & Lyu, Fan & Deng, Na & Li, Cong & Yu, Shaojie, 2017. "Assessment of the optimum operation conditions on a heat pipe heat exchanger for waste heat recovery in steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 50-60.
- Yao, Lichao & Zou, Zhengping, 2020. "A one-dimensional design methodology for supercritical carbon dioxide Brayton cycles: Integration of cycle conceptual design and components preliminary design," Applied Energy, Elsevier, vol. 276(C).
- Meftahpour, Haleh & Saray, Rahim Khoshbakhti & Aghaei, Ali Tavakkol & Bahlouli, Keyvan, 2024. "Comprehensive analysis of energy, exergy, economic, and environmental aspects in implementing the Kalina cycle for waste heat recovery from a gas turbine cycle coupled with a steam generator," Energy, Elsevier, vol. 290(C).
- Li, Ligeng & Tian, Hua & Liu, Peng & Shi, Lingfeng & Shu, Gequn, 2021. "Optimization of CO2 Transcritical Power Cycle (CTPC) for engine waste heat recovery based on split concept," Energy, Elsevier, vol. 229(C).
More about this item
Keywords
Combined cycle; Printed-circuit-heat-exchanger; Cycle efficiency; Exergy; Cold-electricity cogeneration;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222024458. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.