IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v211y2025ics1364032124009778.html
   My bibliography  Save this article

Artificial intelligence integrated grid systems: Technologies, potential frameworks, challenges, and research directions

Author

Listed:
  • Alam, Md Morshed
  • Hossain, M.J.
  • Habib, Md Ahasan
  • Arafat, M.Y.
  • Hannan, M.A.

Abstract

Real-time monitoring and control are crucial for ensuring the resilient, coordinated, and optimal operation of next-generation power systems, such as virtual power plants and microgrids. Artificial intelligence (AI) technologies have great potential for improving the effectiveness of monitoring, controlling, optimizing, and managing energy systems. As such, integrating AI into energy systems is seen as a promising path for developing intelligent grids, especially given the rise of distributed and renewable energy sources and the shift toward net-zero systems. This research explores the latest advancements across various areas of energy systems, revealing the current capabilities of intelligent monitoring and fault detection, control and optimization strategies, and energy management systems. The study delves into the key challenges, methods, findings, and research gaps in these areas. It further outlines a framework and the potential benefits of intelligent grid systems, offering multiple directions for future research to address these gaps. Ultimately, this comprehensive review aims to guide industry experts in the practical application of these innovations.

Suggested Citation

  • Alam, Md Morshed & Hossain, M.J. & Habib, Md Ahasan & Arafat, M.Y. & Hannan, M.A., 2025. "Artificial intelligence integrated grid systems: Technologies, potential frameworks, challenges, and research directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032124009778
    DOI: 10.1016/j.rser.2024.115251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124009778
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Quynh T. Tran & Leon Roose & Binh Doan Van & Quang Ninh Nguyen, 2022. "A Low-Cost Online Health Assessment System for Oil-Immersed Service Transformers Using Real-Time Grid Energy Monitoring," Energies, MDPI, vol. 15(16), pages 1-16, August.
    2. Abdollah Younesi & Hossein Shayeghi & Pierluigi Siano, 2020. "Assessing the Use of Reinforcement Learning for Integrated Voltage/Frequency Control in AC Microgrids," Energies, MDPI, vol. 13(5), pages 1-22, March.
    3. Yonghong Ma & Baixuan Li, 2020. "Hybridized Intelligent Home Renewable Energy Management System for Smart Grids," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
    4. Kow, Ken Weng & Wong, Yee Wan & Rajkumar, Rajparthiban Kumar & Rajkumar, Rajprasad Kumar, 2016. "A review on performance of artificial intelligence and conventional method in mitigating PV grid-tied related power quality events," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 334-346.
    5. Ashok, Mona & Madan, Rohit & Joha, Anton & Sivarajah, Uthayasankar, 2022. "Ethical framework for Artificial Intelligence and Digital technologies," International Journal of Information Management, Elsevier, vol. 62(C).
    6. Mellit, A. & Benghanem, M. & Kalogirou, S. & Massi Pavan, A., 2023. "An embedded system for remote monitoring and fault diagnosis of photovoltaic arrays using machine learning and the internet of things," Renewable Energy, Elsevier, vol. 208(C), pages 399-408.
    7. Panthi, Manikant & Kanti Das, Tanmoy, 2022. "Intelligent Intrusion Detection Scheme for Smart Power-Grid Using Optimized Ensemble Learning on Selected Features," International Journal of Critical Infrastructure Protection, Elsevier, vol. 39(C).
    8. Cristian Cepeda & Cesar Orozco-Henao & Winston Percybrooks & Juan Diego Pulgarín-Rivera & Oscar Danilo Montoya & Walter Gil-González & Juan Carlos Vélez, 2020. "Intelligent Fault Detection System for Microgrids," Energies, MDPI, vol. 13(5), pages 1-21, March.
    9. Shi, Zhongtuo & Yao, Wei & Li, Zhouping & Zeng, Lingkang & Zhao, Yifan & Zhang, Runfeng & Tang, Yong & Wen, Jinyu, 2020. "Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions," Applied Energy, Elsevier, vol. 278(C).
    10. Faisal Mohammad & Mohamed A. Ahmed & Young-Chon Kim, 2021. "Efficient Energy Management Based on Convolutional Long Short-Term Memory Network for Smart Power Distribution System," Energies, MDPI, vol. 14(19), pages 1-23, September.
    11. Mohammadali Kiehbadroudinezhad & Adel Merabet & Ahmed G. Abo-Khalil & Tareq Salameh & Chaouki Ghenai, 2022. "Intelligent and Optimized Microgrids for Future Supply Power from Renewable Energy Resources: A Review," Energies, MDPI, vol. 15(9), pages 1-21, May.
    12. Raad Salih Jawad & Hafedh Abid, 2023. "HVDC Fault Detection and Classification with Artificial Neural Network Based on ACO-DWT Method," Energies, MDPI, vol. 16(3), pages 1-18, January.
    13. Sapountzoglou, Nikolaos & Lago, Jesus & De Schutter, Bart & Raison, Bertrand, 2020. "A generalizable and sensor-independent deep learning method for fault detection and location in low-voltage distribution grids," Applied Energy, Elsevier, vol. 276(C).
    14. Yu-Chung Tsao & Thuy-Linh Vu, 2023. "Electricity pricing, capacity, and predictive maintenance considering reliability," Annals of Operations Research, Springer, vol. 322(2), pages 991-1011, March.
    15. Syed Basit Ali Bukhari & Abdul Wadood & Tahir Khurshaid & Khawaja Khalid Mehmood & Sang Bong Rhee & Ki-Chai Kim, 2022. "Empirical Wavelet Transform-Based Intelligent Protection Scheme for Microgrids," Energies, MDPI, vol. 15(21), pages 1-17, October.
    16. Patnaik, Bhaskar & Mishra, Manohar & Bansal, Ramesh C. & Jena, Ranjan K., 2021. "MODWT-XGBoost based smart energy solution for fault detection and classification in a smart microgrid," Applied Energy, Elsevier, vol. 285(C).
    17. D. Vallejo & J. Albusac & C. Glez-Morcillo & J.J. Castro-Schez & L. Jiménez, 2014. "A multi-agent approach to intelligent monitoring in smart grids," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(4), pages 756-777, April.
    18. Ahl, A. & Yarime, M. & Goto, M. & Chopra, Shauhrat S. & Kumar, Nallapaneni Manoj. & Tanaka, K. & Sagawa, D., 2020. "Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    19. Mostafa Bakkar & Santiago Bogarra & Felipe Córcoles & Ahmed Aboelhassan & Shuo Wang & Javier Iglesias, 2022. "Artificial Intelligence-Based Protection for Smart Grids," Energies, MDPI, vol. 15(13), pages 1-18, July.
    20. Hua, Weiqi & Chen, Ying & Qadrdan, Meysam & Jiang, Jing & Sun, Hongjian & Wu, Jianzhong, 2022. "Applications of blockchain and artificial intelligence technologies for enabling prosumers in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    21. Zixia Yuan & Guojiang Xiong & Xiaofan Fu, 2022. "Artificial Neural Network for Fault Diagnosis of Solar Photovoltaic Systems: A Survey," Energies, MDPI, vol. 15(22), pages 1-18, November.
    22. Zhao, Yang & Li, Tingting & Zhang, Xuejun & Zhang, Chaobo, 2019. "Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 85-101.
    23. Ivan Grcić & Hrvoje Pandžić & Damir Novosel, 2021. "Fault Detection in DC Microgrids Using Short-Time Fourier Transform," Energies, MDPI, vol. 14(2), pages 1-14, January.
    24. Maher G. M. Abdolrasol & Mahammad Abdul Hannan & S. M. Suhail Hussain & Taha Selim Ustun & Mahidur R. Sarker & Pin Jern Ker, 2021. "Energy Management Scheduling for Microgrids in the Virtual Power Plant System Using Artificial Neural Networks," Energies, MDPI, vol. 14(20), pages 1-19, October.
    25. Syed Basit Ali Bukhari & Khawaja Khalid Mehmood & Abdul Wadood & Herie Park, 2021. "Intelligent Islanding Detection of Microgrids Using Long Short-Term Memory Networks," Energies, MDPI, vol. 14(18), pages 1-16, September.
    26. Mudhafar Al-Saadi & Maher Al-Greer & Michael Short, 2023. "Reinforcement Learning-Based Intelligent Control Strategies for Optimal Power Management in Advanced Power Distribution Systems: A Survey," Energies, MDPI, vol. 16(4), pages 1-38, February.
    27. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    28. Teke Gush & Syed Basit Ali Bukhari & Khawaja Khalid Mehmood & Samuel Admasie & Ji-Soo Kim & Chul-Hwan Kim, 2019. "Intelligent Fault Classification and Location Identification Method for Microgrids Using Discrete Orthonormal Stockwell Transform-Based Optimized Multi-Kernel Extreme Learning Machine," Energies, MDPI, vol. 12(23), pages 1-16, November.
    29. Rizeakos, V. & Bachoumis, A. & Andriopoulos, N. & Birbas, M. & Birbas, A., 2023. "Deep learning-based application for fault location identification and type classification in active distribution grids," Applied Energy, Elsevier, vol. 338(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Kaiyu & Qian, Tao & Zhang, Wang & Wu, Shaohui & Han, Rushuai & Hou, Kai & Wu, Zaijun & Hu, Qinran, 2025. "Review on small-signal stability of multiple virtual synchronous generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamed Rezapour & Sadegh Jamali & Alireza Bahmanyar, 2023. "Review on Artificial Intelligence-Based Fault Location Methods in Power Distribution Networks," Energies, MDPI, vol. 16(12), pages 1-18, June.
    2. Andrzej Ożadowicz & Gabriela Walczyk, 2023. "Energy Performance and Control Strategy for Dynamic Façade with Perovskite PV Panels—Technical Analysis and Case Study," Energies, MDPI, vol. 16(9), pages 1-23, April.
    3. Leyla Zafari & Yuan Liu & Abhisek Ukil & Nirmal-Kumar C. Nair, 2025. "Advances in HVDC Systems: Aspects, Principles, and a Comprehensive Review of Signal Processing Techniques for Fault Detection," Energies, MDPI, vol. 18(12), pages 1-37, June.
    4. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    5. Chongchong Xu & Zhicheng Liao & Chaojie Li & Xiaojun Zhou & Renyou Xie, 2022. "Review on Interpretable Machine Learning in Smart Grid," Energies, MDPI, vol. 15(12), pages 1-31, June.
    6. Yousaf, Imran & Ohikhuare, Obaika M. & Li, Yong & Li, Yanshuang, 2024. "Interconnectedness between electricity and artificial intelligence-based markets during the crisis periods: Evidence from the TVP-VAR approach," Energy Economics, Elsevier, vol. 139(C).
    7. Ángeles Verdejo-Espinosa & Macarena Espinilla-Estévez & Francisco Mata Mata, 2020. "Smart Grids and Their Role in Transforming Human Activities—A Systematic Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-26, October.
    8. Javier Parra-Domínguez & Esteban Sánchez & Ángel Ordóñez, 2023. "The Prosumer: A Systematic Review of the New Paradigm in Energy and Sustainable Development," Sustainability, MDPI, vol. 15(13), pages 1-44, July.
    9. Stracqualursi, Erika & Rosato, Antonello & Di Lorenzo, Gianfranco & Panella, Massimo & Araneo, Rodolfo, 2023. "Systematic review of energy theft practices and autonomous detection through artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    10. Paola Campana & Riccardo Censi & Roberto Ruggieri & Carlo Amendola, 2025. "Smart Grids and Sustainability: The Impact of Digital Technologies on the Energy Transition," Energies, MDPI, vol. 18(9), pages 1-16, April.
    11. Peter, Nirma & Gupta, Pankaj & Goel, Nidhi, 2025. "Intelligent strategies for microgrid protection: A comprehensive review," Applied Energy, Elsevier, vol. 379(C).
    12. Mousavi, Rashin & Mousavi, Arash & Mousavi, Yashar & Tavasoli, Mahsa & Arab, Aliasghar & Kucukdemiral, Ibrahim Beklan & Alfi, Alireza & Fekih, Afef, 2025. "Revolutionizing solar energy resources: The central role of generative AI in elevating system sustainability and efficiency," Applied Energy, Elsevier, vol. 382(C).
    13. Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
    14. Chisom E. Ogbogu & Jesse Thornburg & Samuel O. Okozi, 2025. "Smart Grid Fault Mitigation and Cybersecurity with Wide-Area Measurement Systems: A Review," Energies, MDPI, vol. 18(4), pages 1-26, February.
    15. Wadim Strielkowski & Andrey Vlasov & Kirill Selivanov & Konstantin Muraviev & Vadim Shakhnov, 2023. "Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review," Energies, MDPI, vol. 16(10), pages 1-31, May.
    16. Zhang, Xiaojing & Khan, Khalid & Shao, Xuefeng & Oprean-Stan, Camelia & Zhang, Qian, 2024. "The rising role of artificial intelligence in renewable energy development in China," Energy Economics, Elsevier, vol. 132(C).
    17. Ferdaus, Md Meftahul & Dam, Tanmoy & Anavatti, Sreenatha & Das, Sarobi, 2024. "Digital technologies for a net-zero energy future: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    18. Erdal Irmak & Ersan Kabalci & Yasin Kabalci, 2023. "Digital Transformation of Microgrids: A Review of Design, Operation, Optimization, and Cybersecurity," Energies, MDPI, vol. 16(12), pages 1-58, June.
    19. Asadi Aghajari, H. & Niknam, T. & Shasadeghi, M. & Sharifhosseini, S.M. & Taabodi, M.H. & Sheybani, Ehsan & Javidi, Giti & Pourbehzadi, Motahareh, 2025. "Analyzing complexities of integrating Renewable Energy Sources into Smart Grid: A comprehensive review," Applied Energy, Elsevier, vol. 383(C).
    20. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032124009778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.