IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v215y2025ics1364032125002163.html
   My bibliography  Save this article

Review on small-signal stability of multiple virtual synchronous generators

Author

Listed:
  • Liu, Kaiyu
  • Qian, Tao
  • Zhang, Wang
  • Wu, Shaohui
  • Han, Rushuai
  • Hou, Kai
  • Wu, Zaijun
  • Hu, Qinran

Abstract

The extensive incorporation of renewable energy sources into the power grid has resulted in a loss of system inertia due to power electronic devices that lack physical inertia, which presents difficulties for frequency stability. Furthermore, the high degree of uncertainty surrounding renewable energy production can significantly affect the power system’s small-signal stability. Virtual synchronous generator (VSG) can emulate the operational characteristics of traditional synchronous generators (SG), providing inertia support to ensure stable system operation. However, the extensive parallel integration of VSGs into the grid introduces new instability factors. This paper focuses on the small-signal stability issues of parallel VSGs. First, small-signal models of the single-machine and multi-machine VSG are established, analyzing its stability issues from a mathematical perspective. Second, the paper details the primary analysis methods for small-signal stability, which are divided into two categories: the state-space method and the impedance modeling method. Third, the paper examines the factors that affect small-signal stability of VSG. Next, several methods to enhance the small-signal stability are reviewed. Finally, the prospects of VSG’s small-signal stability are discussed.

Suggested Citation

  • Liu, Kaiyu & Qian, Tao & Zhang, Wang & Wu, Shaohui & Han, Rushuai & Hou, Kai & Wu, Zaijun & Hu, Qinran, 2025. "Review on small-signal stability of multiple virtual synchronous generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:rensus:v:215:y:2025:i:c:s1364032125002163
    DOI: 10.1016/j.rser.2025.115543
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125002163
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115543?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Alam, Md Morshed & Hossain, M.J. & Habib, Md Ahasan & Arafat, M.Y. & Hannan, M.A., 2025. "Artificial intelligence integrated grid systems: Technologies, potential frameworks, challenges, and research directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    2. Chen, Lei & Xie, Xiaorong & He, Jingbo & Xu, Tao & Xu, Dechao & Ma, Ningning, 2023. "Wideband oscillation monitoring in power systems with high-penetration of renewable energy sources and power electronics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    3. Zhang, Yuanshi & Qian, Wenyan & Ye, Yujian & Li, Yang & Tang, Yi & Long, Yu & Duan, Meimei, 2023. "A novel non-intrusive load monitoring method based on ResNet-seq2seq networks for energy disaggregation of distributed energy resources integrated with residential houses," Applied Energy, Elsevier, vol. 349(C).
    4. Bo Zhang & Xiangwu Yan & Dongxue Li & Xueyuan Zhang & Jinzuo Han & Xiangning Xiao, 2018. "Stable Operation and Small-Signal Analysis of Multiple Parallel DG Inverters Based on a Virtual Synchronous Generator Scheme," Energies, MDPI, vol. 11(1), pages 1-22, January.
    5. Sue Wang & Yuxin Xie, 2023. "Virtual Synchronous Generator (VSG) Control Strategy Based on Improved Damping and Angular Frequency Deviation Feedforward," Energies, MDPI, vol. 16(15), pages 1-14, July.
    6. Xiaoke Ding & Junwei Cao, 2024. "Deep and Reinforcement Learning in Virtual Synchronous Generator: A Comprehensive Review," Energies, MDPI, vol. 17(11), pages 1-20, May.
    7. Sohail Khan & Benoit Bletterie & Adolfo Anta & Wolfgang Gawlik, 2018. "On Small Signal Frequency Stability under Virtual Inertia and the Role of PLLs," Energies, MDPI, vol. 11(9), pages 1-18, September.
    8. Henning Thiesen & Clemens Jauch, 2020. "Determining the Load Inertia Contribution from Different Power Consumer Groups," Energies, MDPI, vol. 13(7), pages 1-14, April.
    9. Kumar, K. Prakash & Saravanan, B., 2017. "Recent techniques to model uncertainties in power generation from renewable energy sources and loads in microgrids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 348-358.
    10. Shanmugarajah Vinothine & Lidula N. Widanagama Arachchige & Athula D. Rajapakse & Roshani Kaluthanthrige, 2022. "Microgrid Energy Management and Methods for Managing Forecast Uncertainties," Energies, MDPI, vol. 15(22), pages 1-22, November.
    11. Zipeng Ke & Yuxing Dai & Zishun Peng & Guoqiang Zeng & Jun Wang & Minying Li & Yong Ning, 2020. "VSG Control Strategy Incorporating Voltage Inertia and Virtual Impedance for Microgrids," Energies, MDPI, vol. 13(16), pages 1-15, August.
    12. Heylen, Evelyn & Teng, Fei & Strbac, Goran, 2021. "Challenges and opportunities of inertia estimation and forecasting in low-inertia power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    13. Rongliang Shi & Caihua Lan & Ji Huang & Chengwei Ju, 2023. "Analysis and Optimization Strategy of Active Power Dynamic Response for VSG under a Weak Grid," Energies, MDPI, vol. 16(12), pages 1-18, June.
    14. Wang, Yang & Chen, Song & Yang, Mengling & Liao, Peng & Xiao, Xianyong & Xie, Xiaorong & Li, Yunwei, 2025. "Low-frequency oscillation in power grids with virtual synchronous generators: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    15. Shengyang Lu & Yu Zhu & Lihu Dong & Guangyu Na & Yan Hao & Guanfeng Zhang & Wuyang Zhang & Shanshan Cheng & Junyou Yang & Yuqiu Sui, 2022. "Small-Signal Stability Research of Grid-Connected Virtual Synchronous Generators," Energies, MDPI, vol. 15(19), pages 1-17, September.
    16. Zamora, Ramon & Srivastava, Anurag K., 2010. "Controls for microgrids with storage: Review, challenges, and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2009-2018, September.
    17. Pepiciello, Antonio & Domínguez-García, José Luis, 2024. "Small-signal stability analysis of uncertain power systems: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    18. Qian, Tao & Liang, Zeyu & Shao, Chengcheng & Guo, Zishan & Hu, Qinran & Wu, Zaijun, 2025. "Unsupervised learning for efficiently distributing EVs charging loads and traffic flows in coupled power and transportation systems," Applied Energy, Elsevier, vol. 377(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmanuel Hernández-Mayoral & Manuel Madrigal-Martínez & Jesús D. Mina-Antonio & Reynaldo Iracheta-Cortez & Jesús A. Enríquez-Santiago & Omar Rodríguez-Rivera & Gregorio Martínez-Reyes & Edwin Mendoza-, 2023. "A Comprehensive Review on Power-Quality Issues, Optimization Techniques, and Control Strategies of Microgrid Based on Renewable Energy Sources," Sustainability, MDPI, vol. 15(12), pages 1-53, June.
    2. Erico Gurski & Roman Kuiava & Filipe Perez & Raphael A. S. Benedito & Gilney Damm, 2024. "A Novel VSG with Adaptive Virtual Inertia and Adaptive Damping Coefficient to Improve Transient Frequency Response of Microgrids," Energies, MDPI, vol. 17(17), pages 1-22, September.
    3. Makolo, Peter & Zamora, Ramon & Lie, Tek-Tjing, 2021. "The role of inertia for grid flexibility under high penetration of variable renewables - A review of challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Daniele Linaro & Federico Bizzarri & Davide Giudice & Cosimo Pisani & Giorgio M. Giannuzzi & Samuele Grillo & Angelo M. Brambilla, 2023. "Continuous estimation of power system inertia using convolutional neural networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Moradi, Amir & Salehi, Javad & Shafie-khah, Miadreza, 2024. "An interactive framework for strategic participation of a price-maker energy hub in the local gas and power markets based on the MPEC method," Energy, Elsevier, vol. 307(C).
    6. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    7. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    8. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    9. Yu, Nan & Kang, Jin-Su & Chang, Chung-Chuan & Lee, Tai-Yong & Lee, Dong-Yup, 2016. "Robust economic optimization and environmental policy analysis for microgrid planning: An application to Taichung Industrial Park, Taiwan," Energy, Elsevier, vol. 113(C), pages 671-682.
    10. Brearley, Belwin J. & Prabu, R. Raja, 2017. "A review on issues and approaches for microgrid protection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 988-997.
    11. Ding, Dong & Li, Junhuai & Wang, Huaijun & Wang, Kan & Feng, Jie & Xiao, Ming, 2024. "ApplianceFilter: Targeted electrical appliance disaggregation with prior knowledge fusion," Applied Energy, Elsevier, vol. 365(C).
    12. Bouzid, Allal M. & Guerrero, Josep M. & Cheriti, Ahmed & Bouhamida, Mohamed & Sicard, Pierre & Benghanem, Mustapha, 2015. "A survey on control of electric power distributed generation systems for microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 751-766.
    13. Md Shafiul Alam & Fahad Saleh Al-Ismail & Mohammad Ali Abido, 2021. "PV/Wind-Integrated Low-Inertia System Frequency Control: PSO-Optimized Fractional-Order PI-Based SMES Approach," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    14. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2013. "The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 442-459.
    15. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    16. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    17. Xiangwu Yan & Jiajia Li & Ling Wang & Shuaishuai Zhao & Tie Li & Zhipeng Lv & Ming Wu, 2018. "Adaptive-MPPT-Based Control of Improved Photovoltaic Virtual Synchronous Generators," Energies, MDPI, vol. 11(7), pages 1-18, July.
    18. Sakthivelnathan Nallainathan & Ali Arefi & Christopher Lund & Ali Mehrizi-Sani, 2025. "Microgrid Reliability Incorporating Uncertainty in Weather and Equipment Failure," Energies, MDPI, vol. 18(8), pages 1-23, April.
    19. Mazzola, Simone & Astolfi, Marco & Macchi, Ennio, 2015. "A detailed model for the optimal management of a multigood microgrid," Applied Energy, Elsevier, vol. 154(C), pages 862-873.
    20. Zheng, Xidong & Bai, Feifei & Zeng, Ziyang & Jin, Tao, 2024. "A new methodology to improve wind power prediction accuracy considering power quality disturbance dimension reduction and elimination," Energy, Elsevier, vol. 287(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:215:y:2025:i:c:s1364032125002163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.