IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1064-d1039658.html
   My bibliography  Save this article

HVDC Fault Detection and Classification with Artificial Neural Network Based on ACO-DWT Method

Author

Listed:
  • Raad Salih Jawad

    (Laboratory of Sciences and Techniques of Automatic Control & Computer Engineering (Lab-STA) Sfax, National School of Engineering of Sfax, University of Sfax, Sfax 3029, Tunisia)

  • Hafedh Abid

    (Laboratory of Sciences and Techniques of Automatic Control & Computer Engineering (Lab-STA) Sfax, National School of Engineering of Sfax, University of Sfax, Sfax 3029, Tunisia)

Abstract

Unlike the more prevalent alternating current transmission systems, the high voltage direct current (HVDC) electric power transmission system transmits electric power using direct current. In order to investigate the precise remedy for fault detection of HVDC, this research proposes a method for the HVDC fault diagnostic methodologies with their limits and feature selection-based probabilistic generative model. The main contribution of this study is using the wavelet transform based on ant colony optimization and ANN to detect the different types of faults in HVDC transmission lines. In the proposed method, ANN uses optimum features obtained from the voltage, current, and their derivative signals. These features cannot be accurate to use in ANN because they cannot give reliable accuracy results. For this reason, first, the wavelet transform applies to the fault and non-fault signals to remove the noise. Then the ACO reduces unimportant features from the feature vector. Finally, the optimum features are used in the training of ANN as faulty and non-faulty signals. The multi-layer perceptron used in the suggested method consists of many layers, enabling the creation of a probability reconstruction over the inputs by the model. A supervised learning method is used to train each layer based on the selected features obtained from the ant colony optimization-discrete wavelet transform metaheuristic method. The artificial neural network technique is used to fine-tune the model to reduce the difference between true and anticipated classes’ error. The input signal and sampling frequencies are changed to examine the suggested strategy’s effectiveness. The obtained results demonstrate that the suggested fault detection and classification model can accurately diagnose HVDC faults. A comparison of the Support vector machine, Decision Tree, K-nearest neighbor algorithm (K-NN), and Ensemble classifier Machine techniques is made to verify the suggested method’s unquestionably higher performance.

Suggested Citation

  • Raad Salih Jawad & Hafedh Abid, 2023. "HVDC Fault Detection and Classification with Artificial Neural Network Based on ACO-DWT Method," Energies, MDPI, vol. 16(3), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1064-:d:1039658
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1064/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1064/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shahriar Rahman Fahim & Subrata K. Sarker & S. M. Muyeen & Md. Rafiqul Islam Sheikh & Sajal K. Das, 2020. "Microgrid Fault Detection and Classification: Machine Learning Based Approach, Comparison, and Reviews," Energies, MDPI, vol. 13(13), pages 1-22, July.
    2. Zhang, Wanqing & Lin, Zi & Liu, Xiaolei, 2022. "Short-term offshore wind power forecasting - A hybrid model based on Discrete Wavelet Transform (DWT), Seasonal Autoregressive Integrated Moving Average (SARIMA), and deep-learning-based Long Short-Te," Renewable Energy, Elsevier, vol. 185(C), pages 611-628.
    3. Mohammad Mujahid Irfan & Sushama Malaji & Chandrashekhar Patsa & Shriram S. Rangarajan & S. M. Suhail Hussain, 2022. "Control of DSTATCOM Using ANN-BP Algorithm for the Grid Connected Wind Energy System," Energies, MDPI, vol. 15(19), pages 1-14, September.
    4. Ying-Yi Hong & Yan-Hung Wei & Yung-Ruei Chang & Yih-Der Lee & Pang-Wei Liu, 2014. "Fault Detection and Location by Static Switches in Microgrids Using Wavelet Transform and Adaptive Network-Based Fuzzy Inference System," Energies, MDPI, vol. 7(4), pages 1-18, April.
    5. Teke Gush & Syed Basit Ali Bukhari & Khawaja Khalid Mehmood & Samuel Admasie & Ji-Soo Kim & Chul-Hwan Kim, 2019. "Intelligent Fault Classification and Location Identification Method for Microgrids Using Discrete Orthonormal Stockwell Transform-Based Optimized Multi-Kernel Extreme Learning Machine," Energies, MDPI, vol. 12(23), pages 1-16, November.
    6. Raad Salih Jawad & Hafedh Abid, 2022. "Fault Detection in HVDC System with Gray Wolf Optimization Algorithm Based on Artificial Neural Network," Energies, MDPI, vol. 15(20), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guang Wang & Jiale Xie & Shunli Wang, 2023. "Application of Artificial Intelligence in Power System Monitoring and Fault Diagnosis," Energies, MDPI, vol. 16(14), pages 1-3, July.
    2. Hamed Rezapour & Sadegh Jamali & Alireza Bahmanyar, 2023. "Review on Artificial Intelligence-Based Fault Location Methods in Power Distribution Networks," Energies, MDPI, vol. 16(12), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahriar Rahman Fahim & Subrata K. Sarker & S. M. Muyeen & Md. Rafiqul Islam Sheikh & Sajal K. Das, 2020. "Microgrid Fault Detection and Classification: Machine Learning Based Approach, Comparison, and Reviews," Energies, MDPI, vol. 13(13), pages 1-22, July.
    2. Alireza Forouzesh & Mohammad S. Golsorkhi & Mehdi Savaghebi & Mehdi Baharizadeh, 2021. "Support Vector Machine Based Fault Location Identification in Microgrids Using Interharmonic Injection," Energies, MDPI, vol. 14(8), pages 1-14, April.
    3. Ali Hadi Abdulwahid & Shaorong Wang, 2016. "A Novel Approach for Microgrid Protection Based upon Combined ANFIS and Hilbert Space-Based Power Setting," Energies, MDPI, vol. 9(12), pages 1-25, December.
    4. Ricardo Granizo Arrabé & Carlos Antonio Platero Gaona & Fernando Álvarez Gómez & Emilio Rebollo López, 2016. "Novel Auto-Reclosing Blocking Method for Combined Overhead-Cable Lines in Power Networks," Energies, MDPI, vol. 9(11), pages 1-20, November.
    5. Nastaran Gholizadeh & Petr Musilek, 2021. "Distributed Learning Applications in Power Systems: A Review of Methods, Gaps, and Challenges," Energies, MDPI, vol. 14(12), pages 1-18, June.
    6. Veerapandiyan Veerasamy & Noor Izzri Abdul Wahab & Rajeswari Ramachandran & Muhammad Mansoor & Mariammal Thirumeni & Mohammad Lutfi Othman, 2018. "High Impedance Fault Detection in Medium Voltage Distribution Network Using Discrete Wavelet Transform and Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 11(12), pages 1-24, November.
    7. Tito G. Amaral & Vitor Fernão Pires & Armando Cordeiro & Daniel Foito & João F. Martins & Julia Yamnenko & Tetyana Tereschenko & Liudmyla Laikova & Ihor Fedin, 2023. "Incipient Fault Diagnosis of a Grid-Connected T-Type Multilevel Inverter Using Multilayer Perceptron and Walsh Transform," Energies, MDPI, vol. 16(6), pages 1-18, March.
    8. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    9. Yijin Li & Jianhua Lin & Geng Niu & Ming Wu & Xuteng Wei, 2021. "A Hilbert–Huang Transform-Based Adaptive Fault Detection and Classification Method for Microgrids," Energies, MDPI, vol. 14(16), pages 1-16, August.
    10. Shuo Jin & Hao Yu & Xiaopeng Fu & Zhiying Wang & Kai Yuan & Peng Li, 2019. "A Universal Design of FPGA-Based Real-Time Simulator for Active Distribution Networks Based on Reconfigurable Computing," Energies, MDPI, vol. 12(11), pages 1-16, May.
    11. Yong Liu & Qiran Li & Masoud Farzaneh & B. X. Du, 2020. "Image Characteristic Extraction of Ice-Covered Outdoor Insulator for Monitoring Icing Degree," Energies, MDPI, vol. 13(20), pages 1-12, October.
    12. Kongming Sun & Qing Chen & Pu Zhao, 2017. "Automatic Faulted Feeder Section Location and Isolation Method for Power Distribution Systems Considering the Change of Topology," Energies, MDPI, vol. 10(8), pages 1-22, July.
    13. Noor Hussain & Mashood Nasir & Juan Carlos Vasquez & Josep M. Guerrero, 2020. "Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems–A Review," Energies, MDPI, vol. 13(9), pages 1-31, May.
    14. Weijie Zhou & Huihui Tao & Huimin Jiang, 2022. "Application of a Novel Optimized Fractional Grey Holt-Winters Model in Energy Forecasting," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    15. Abha Pragati & Manohar Mishra & Pravat Kumar Rout & Debadatta Amaresh Gadanayak & Shazia Hasan & B. Rajanarayan Prusty, 2023. "A Comprehensive Survey of HVDC Protection System: Fault Analysis, Methodology, Issues, Challenges, and Future Perspective," Energies, MDPI, vol. 16(11), pages 1-39, May.
    16. Otilia Elena Dragomir & Florin Dragomir & Veronica Stefan & Eugenia Minca, 2015. "Adaptive Neuro-Fuzzy Inference Systems as a Strategy for Predicting and Controling the Energy Produced from Renewable Sources," Energies, MDPI, vol. 8(11), pages 1-15, November.
    17. Jannis N. Kahlen & Michael Andres & Albert Moser, 2021. "Improving Machine-Learning Diagnostics with Model-Based Data Augmentation Showcased for a Transformer Fault," Energies, MDPI, vol. 14(20), pages 1-20, October.
    18. Zhen Huang & Xuechun Xiao & Yuan Gao & Yonghong Xia & Tomislav Dragičević & Pat Wheeler, 2023. "Emerging Information Technologies for the Energy Management of Onboard Microgrids in Transportation Applications," Energies, MDPI, vol. 16(17), pages 1-26, August.
    19. Sinhara M. H. D. Perera & Ghanim Putrus & Michael Conlon & Mahinsasa Narayana & Keith Sunderland, 2022. "Wind Energy Harvesting and Conversion Systems: A Technical Review," Energies, MDPI, vol. 15(24), pages 1-34, December.
    20. Yang, Mao & Zhao, Meng & Huang, Dawei & Su, Xin, 2022. "A composite framework for photovoltaic day-ahead power prediction based on dual clustering of dynamic time warping distance and deep autoencoder," Renewable Energy, Elsevier, vol. 194(C), pages 659-673.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1064-:d:1039658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.