IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v210y2025ics1364032124009730.html
   My bibliography  Save this article

Prospects and challenges of seawater source heat pump utilization in China: A systematic review

Author

Listed:
  • Wang, Luhang
  • Xu, Chunwen
  • Wang, Chunli
  • Zhang, Lancai
  • Xu, Huanyong
  • Su, Huan
  • Zheng, Jianshi

Abstract

Seawater source heat pumps (SWSHP) offer promising renewable energy solutions for coastal cities, aligning with China's carbon neutrality goals. This comprehensive review synthesizes state-of-the-art SWSHP technology, identifies key research gaps, and proposes future research directions. SWSHP systems are classified into open and closed loops, with analysis of seawater intake modes and heat exchanger types. Performance evaluation indexes for energy, economic, and environmental aspects are summarized. The review highlights SWSHP's potential in district heating and mariculture, emphasizing the importance of considering seawater temperature, tides, and district characteristics for implementation. Key challenges identified include corrosion issues, thermal pollution, suboptimal complementary energy design, and techno-economic barriers. An interdisciplinary perspective offers a holistic view of SWSHP systems and their impacts. The review contributes by identifying seven critical research areas: large-scale SWSHP systems, multi-energy integration, energy storage integration, mariculture-specific applications, comprehensive evaluation frameworks, marine ecological impact assessments, and cutting-edge technology development. This work provides valuable insights for policy decisions and critical analysis of current limitations, aiming to advance SWSHP technology and promote sustainable implementation in coastal regions. By addressing these research gaps and focusing on proposed directions, this review guides future research and development in the renewable energy sector, supporting the transition towards sustainable energy utilization and climate change mitigation.

Suggested Citation

  • Wang, Luhang & Xu, Chunwen & Wang, Chunli & Zhang, Lancai & Xu, Huanyong & Su, Huan & Zheng, Jianshi, 2025. "Prospects and challenges of seawater source heat pump utilization in China: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124009730
    DOI: 10.1016/j.rser.2024.115247
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124009730
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115247?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Minwoo & Ham, Se Hyeon & Lee, Sewon & Kim, Jinyoung & Kim, Yongchan, 2023. "Multi-objective optimization of solar-assisted ground-source heat pumps for minimizing life-cycle cost and climate performance in heating-dominated regions," Energy, Elsevier, vol. 270(C).
    2. Yang, Xiaochen & Li, Hongwei & Svendsen, Svend, 2016. "Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating," Energy, Elsevier, vol. 109(C), pages 248-259.
    3. Fan, Yi & Zhao, Xudong & Han, Zhonghe & Li, Jing & Badiei, Ali & Akhlaghi, Yousef Golizadeh & Liu, Zhijian, 2021. "Scientific and technological progress and future perspectives of the solar assisted heat pump (SAHP) system," Energy, Elsevier, vol. 229(C).
    4. Volkova, A. & Koduvere, H. & Pieper, H., 2022. "Large-scale heat pumps for district heating systems in the Baltics: Potential and impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Beccali, Marco & Bonomolo, Marina & Martorana, Francesca & Catrini, Pietro & Buscemi, Alessandro, 2022. "Electrical hybrid heat pumps assisted by natural gas boilers: a review," Applied Energy, Elsevier, vol. 322(C).
    6. Huminic, Gabriela & Huminic, Angel, 2012. "Application of nanofluids in heat exchangers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5625-5638.
    7. Lund, Rasmus & Persson, Urban, 2016. "Mapping of potential heat sources for heat pumps for district heating in Denmark," Energy, Elsevier, vol. 110(C), pages 129-138.
    8. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    9. Pieper, Henrik & Ommen, Torben & Kjær Jensen, Jonas & Elmegaard, Brian & Brix Markussen, Wiebke, 2020. "Comparison of COP estimation methods for large-scale heat pumps used in energy planning," Energy, Elsevier, vol. 205(C).
    10. Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
    11. Gaudard, Adrien & Wüest, Alfred & Schmid, Martin, 2019. "Using lakes and rivers for extraction and disposal of heat: Estimate of regional potentials," Renewable Energy, Elsevier, vol. 134(C), pages 330-342.
    12. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    13. Luo, Jin & Zhang, Qi & Liang, Changming & Wang, Haiqi & Ma, Xinning, 2023. "An overview of the recent development of the Ground Source Heat Pump (GSHP) system in China," Renewable Energy, Elsevier, vol. 210(C), pages 269-279.
    14. Zhou, Chaohui & Ni, Long & Yao, Yang, 2018. "Heat transfer analysis of multi-row helically coiled tube heat exchangers for surface water-source heat pump," Energy, Elsevier, vol. 163(C), pages 1032-1049.
    15. Liu, Long & Wang, Mingqing & Chen, Yu, 2019. "A practical research on capillaries used as a front-end heat exchanger of seawater-source heat pump," Energy, Elsevier, vol. 171(C), pages 170-179.
    16. Liu, Guodan & Li, Chuanrui & Hu, Songtao & Ji, Yongming & Tong, Zhen & Wang, Yimei & Tong, Li & Mao, Zhu & Lu, Shan, 2020. "Study on heat transfer model of capillary exchanger in subway source heat pump system," Renewable Energy, Elsevier, vol. 150(C), pages 1074-1088.
    17. Chow, T. T. & Au, W. H. & Yau, Raymond & Cheng, Vincent & Chan, Apple & Fong, K. F., 2004. "Applying district-cooling technology in Hong Kong," Applied Energy, Elsevier, vol. 79(3), pages 275-289, November.
    18. Baik, Young-Jin & Kim, Minsung & Chang, Ki-Chang & Lee, Young-Soo & Ra, Ho-Sang, 2014. "Potential to enhance performance of seawater-source heat pump by series operation," Renewable Energy, Elsevier, vol. 65(C), pages 236-244.
    19. Zhe Wang & Fenghui Han & Yulong Ji & Wenhua Li, 2020. "Performance and Exergy Transfer Analysis of Heat Exchangers with Graphene Nanofluids in Seawater Source Marine Heat Pump System," Energies, MDPI, vol. 13(7), pages 1-17, April.
    20. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Challenges, opportunities, and strategies for undertaking integrated precinct-scale energy–water system planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    21. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).
    22. Ciro Aprea & Adriana Greco & Angelo Maiorino & Claudia Masselli, 2019. "Enhancing the Heat Transfer in an Active Barocaloric Cooling System Using Ethylene-Glycol Based Nanofluids as Secondary Medium," Energies, MDPI, vol. 12(15), pages 1-15, July.
    23. Pieper, Henrik & Ommen, Torben & Elmegaard, Brian & Brix Markussen, Wiebke, 2019. "Assessment of a combination of three heat sources for heat pumps to supply district heating," Energy, Elsevier, vol. 176(C), pages 156-170.
    24. Yu, Jie & Zhang, Huan & You, Shijun, 2012. "Heat transfer analysis and experimental verification of casted heat exchanger in non-icing and icing conditions in winter," Renewable Energy, Elsevier, vol. 41(C), pages 39-43.
    25. Østergaard, Poul Alberg & Werner, Sven & Dyrelund, Anders & Lund, Henrik & Arabkoohsar, Ahmad & Sorknæs, Peter & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Mathiesen, Brian Vad, 2022. "The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect," Energy, Elsevier, vol. 253(C).
    26. Koroneos, C. & Xydis, G. & Polyzakis, A., 2010. "The optimal use of renewable energy sources--The case of the new international "Makedonia" airport of Thessaloniki, Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1622-1628, August.
    27. Azad, Abazar Vahdat & Amidpour, Majid, 2011. "Economic optimization of shell and tube heat exchanger based on constructal theory," Energy, Elsevier, vol. 36(2), pages 1087-1096.
    28. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
    29. Zhen, Li & Lin, D.M. & Shu, H.W. & Jiang, Shuang & Zhu, Y.X., 2007. "District cooling and heating with seawater as heat source and sink in Dalian, China," Renewable Energy, Elsevier, vol. 32(15), pages 2603-2616.
    30. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    31. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
    32. Buffa, Simone & Cozzini, Marco & D’Antoni, Matteo & Baratieri, Marco & Fedrizzi, Roberto, 2019. "5th generation district heating and cooling systems: A review of existing cases in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 504-522.
    33. Xie, Yiwei & Hu, Pingfang & Peng, Donggen & Zhu, Na & Lei, Fei, 2023. "Development of a group control strategy based on multi-step load forecasting and its application in hybrid ground source heat pump," Energy, Elsevier, vol. 273(C).
    34. Aguilera, José Joaquín & Meesenburg, Wiebke & Ommen, Torben & Markussen, Wiebke Brix & Poulsen, Jonas Lundsted & Zühlsdorf, Benjamin & Elmegaard, Brian, 2022. "A review of common faults in large-scale heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    35. Li, Jianglong & Ho, Mun Sing & Xie, Chunping & Stern, Nicholas, 2022. "China's flexibility challenge in achieving carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    36. Zheng, Wandong & Yin, Hao & Li, Bojia & Zhang, Huan & Jurasz, Jakub & Zhong, Lei, 2022. "Heating performance and spatial analysis of seawater-source heat pump with staggered tube-bundle heat exchanger," Applied Energy, Elsevier, vol. 305(C).
    37. Niu, Fuxin & Yu, Yuebin, 2016. "Location and optimization analysis of capillary tube network embedded in active tuning building wall," Energy, Elsevier, vol. 97(C), pages 36-45.
    38. Xu, Xiaofeng & Wei, Zhifei & Ji, Qiang & Wang, Chenglong & Gao, Guowei, 2019. "Global renewable energy development: Influencing factors, trend predictions and countermeasures," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    39. Jinming Jiang & Xindong Wei & Weijun Gao & Soichiro Kuroki & Zhonghui Liu, 2018. "Reliability and Maintenance Prioritization Analysis of Combined Cooling, Heating and Power Systems," Energies, MDPI, vol. 11(6), pages 1-24, June.
    40. Langer, Jannis & Cahyaningwidi, Aida Astuti & Chalkiadakis, Charis & Quist, Jaco & Hoes, Olivier & Blok, Kornelis, 2021. "Plant siting and economic potential of ocean thermal energy conversion in Indonesia a novel GIS-based methodology," Energy, Elsevier, vol. 224(C).
    41. Esteban, Miguel & Leary, David, 2012. "Current developments and future prospects of offshore wind and ocean energy," Applied Energy, Elsevier, vol. 90(1), pages 128-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timur Abbiasov & Aldo Bischi & Manfredi Gangi & Andrea Baccioli & Paolo Santi & Carlo Ratti, 2025. "Leveraging Seawater Thermal Energy Storage and Heat Pumps for Coupling Electricity and Urban Heating: A Techno-Economic Analysis," Energies, MDPI, vol. 18(7), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhenjing & You, Shijun & Zhang, Huan & Zheng, Wandong, 2020. "Model development and performance investigation of staggered tube-bundle heat exchanger for seawater source heat pump," Applied Energy, Elsevier, vol. 262(C).
    2. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    3. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    4. Yao, Shuai & Wu, Jianzhong & Qadrdan, Meysam, 2024. "A state-of-the-art analysis and perspectives on the 4th/5th generation district heating and cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    5. Abugabbara, Marwan & Javed, Saqib & Johansson, Dennis, 2022. "A simulation model for the design and analysis of district systems with simultaneous heating and cooling demands," Energy, Elsevier, vol. 261(PA).
    6. Li, Xiang & Yilmaz, Selin & Patel, Martin K. & Chambers, Jonathan, 2023. "Techno-economic analysis of fifth-generation district heating and cooling combined with seasonal borehole thermal energy storage," Energy, Elsevier, vol. 285(C).
    7. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Sommer, Tobias & Sotnikov, Artem & Sulzer, Matthias & Scholz, Volkher & Mischler, Stefan & Rismanchi, Behzad & Gjoka, Kristian & Mennel, Stefan, 2022. "Hydrothermal challenges in low-temperature networks with distributed heat pumps," Energy, Elsevier, vol. 257(C).
    9. Barco-Burgos, J. & Bruno, J.C. & Eicker, U. & Saldaña-Robles, A.L. & Alcántar-Camarena, V., 2022. "Review on the integration of high-temperature heat pumps in district heating and cooling networks," Energy, Elsevier, vol. 239(PE).
    10. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
    11. Fuchs, Nicolas & Yanez, Guillermo & Nkongdem, Bertrand & Thomsen, Jessica, 2025. "Evaluating low-temperature heat sources for large-scale heat pump integration: A method using open-source data and indicators," Applied Energy, Elsevier, vol. 377(PB).
    12. Gjoka, Kristian & Rismanchi, Behzad & Crawford, Robert H., 2023. "Fifth-generation district heating and cooling systems: A review of recent advancements and implementation barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    13. Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
    14. Eskafi, Majid & Ásmundsson, Ragnar & Jónsson, Steingrímur, 2019. "Feasibility of seawater heat extraction from sub-Arctic coastal water; a case study of Onundarfjordur, northwest Iceland," Renewable Energy, Elsevier, vol. 134(C), pages 95-102.
    15. Aste, Niccolò & Caputo, Paola & Del Pero, Claudio & Ferla, Giulio & Huerto-Cardenas, Harold Enrique & Leonforte, Fabrizio & Miglioli, Alessandro, 2020. "A renewable energy scenario for a new low carbon settlement in northern Italy: Biomass district heating coupled with heat pump and solar photovoltaic system," Energy, Elsevier, vol. 206(C).
    16. Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).
    17. Narula, Kapil & Chambers, Jonathan & Streicher, Kai N. & Patel, Martin K., 2019. "Strategies for decarbonising the Swiss heating system," Energy, Elsevier, vol. 169(C), pages 1119-1131.
    18. Manz, Pia & Billerbeck, Anna & Kök, Ali & Fallahnejad, Mostafa & Fleiter, Tobias & Kranzl, Lukas & Braungardt, Sibylle & Eichhammer, Wolfgang, 2024. "Spatial analysis of renewable and excess heat potentials for climate-neutral district heating in Europe," Renewable Energy, Elsevier, vol. 224(C).
    19. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Østergaard, Poul Alberg & Werner, Sven & Dyrelund, Anders & Lund, Henrik & Arabkoohsar, Ahmad & Sorknæs, Peter & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Mathiesen, Brian Vad, 2022. "The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect," Energy, Elsevier, vol. 253(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124009730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.