IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v163y2018icp1032-1049.html
   My bibliography  Save this article

Heat transfer analysis of multi-row helically coiled tube heat exchangers for surface water-source heat pump

Author

Listed:
  • Zhou, Chaohui
  • Ni, Long
  • Yao, Yang

Abstract

An experiment system simulating the uniform flow of surface water with low velocities was established to investigate the heat transfer performance of multi-row helically coiled tube (MHCT) heat exchangers for surface water-source heat pump. Four experimental modes of variable temperatures and velocities of surface water and medium were performed on eight MHCT configurations with different geometric parameters including horizontal spacing, vertical spacing and tube length. The results demonstrate that when the surface water velocity changes and the other parameters are constant, the outside Nusselt number depends on the Reynolds number. Conversely, it depends on the Rayleigh number. Both the inside and outside Nusselt numbers increase with vertical spacing and horizontal spacing. The effect of vertical spacing is more obvious on the outside Nusselt number, but can be neglected on the inside Nusselt number. By comparison, the correlations of single-row helically coiled tubes cannot accurately calculate the inside Nusselt number of the MHCT, and the influence of surface-water velocity on the outside Nusselt number is not negligible. The correlations for the prediction of the inside and outside Nusselt numbers are developed. Additionally, the effect of tube length on the Nusselt number is small, and can be ignored for engineering applications.

Suggested Citation

  • Zhou, Chaohui & Ni, Long & Yao, Yang, 2018. "Heat transfer analysis of multi-row helically coiled tube heat exchangers for surface water-source heat pump," Energy, Elsevier, vol. 163(C), pages 1032-1049.
  • Handle: RePEc:eee:energy:v:163:y:2018:i:c:p:1032-1049
    DOI: 10.1016/j.energy.2018.08.190
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218317262
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.190?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Huai & Xu, Wei & Yu, Zhen & Wu, Jianlin & Sun, Zhifeng, 2017. "Application analyze of a ground source heat pump system in a nearly zero energy building in China," Energy, Elsevier, vol. 125(C), pages 140-151.
    2. Naphon, Paisarn & Wongwises, Somchai, 2006. "A review of flow and heat transfer characteristics in curved tubes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 463-490, October.
    3. Liu, Zhijian & Xu, Wei & Zhai, Xue & Qian, Cheng & Chen, Xi, 2017. "Feasibility and performance study of the hybrid ground-source heat pump system for one office building in Chinese heating dominated areas," Renewable Energy, Elsevier, vol. 101(C), pages 1131-1140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Zhenjing & You, Shijun & Zhang, Huan & Zheng, Wandong, 2020. "Model development and performance investigation of staggered tube-bundle heat exchanger for seawater source heat pump," Applied Energy, Elsevier, vol. 262(C).
    2. Zhou, Chaohui & Ni, Long & Li, Jun & Lin, Zeri & Wang, Jun & Fu, Xuhui & Yao, Yang, 2019. "Air-source heat pump heating system with a new temperature and hydraulic-balance control strategy: A field experiment in a teaching building," Renewable Energy, Elsevier, vol. 141(C), pages 148-161.
    3. You, Tian & Wu, Wei & Yang, Hongxing & Liu, Jiankun & Li, Xianting, 2021. "Hybrid photovoltaic/thermal and ground source heat pump: Review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Zheng, Wandong & Yin, Hao & Li, Bojia & Zhang, Huan & Jurasz, Jakub & Zhong, Lei, 2022. "Heating performance and spatial analysis of seawater-source heat pump with staggered tube-bundle heat exchanger," Applied Energy, Elsevier, vol. 305(C).
    5. Sun, Jinxiang & Zhang, Ruibo & Wang, Mingjun & Zhang, Jing & Qiu, Suizheng & Tian, Wenxi & Su, G.H., 2022. "Multi-objective optimization of helical coil steam generator in high temperature gas reactors with genetic algorithm and response surface method," Energy, Elsevier, vol. 259(C).
    6. Dong Kyu Park & Youngmin Lee, 2020. "Numerical Simulations on the Application of a Closed-Loop Lake Water Heat Pump System in the Lake Soyang, Korea," Energies, MDPI, vol. 13(3), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhilong He & Tao Wang & Xiaolin Wang & Xueyuan Peng & Ziwen Xing, 2018. "Experimental Investigation into the Effect of Oil Injection on the Performance of a Variable Speed Twin-Screw Compressor," Energies, MDPI, vol. 11(6), pages 1-14, May.
    2. Zhang, Sheng & Lin, Zhang & Ai, Zhengtao & Huan, Chao & Cheng, Yong & Wang, Fenghao, 2019. "Multi-criteria performance optimization for operation of stratum ventilation under heating mode," Applied Energy, Elsevier, vol. 239(C), pages 969-980.
    3. Amani, E. & Nobari, M.R.H., 2011. "A numerical investigation of entropy generation in the entrance region of curved pipes at constant wall temperature," Energy, Elsevier, vol. 36(8), pages 4909-4918.
    4. Ji Li & Yuanwei Liu & Ruixue Zhang & Zhijian Liu & Wei Xu & Biao Qiao & Xiaomei Feng, 2018. "Load Distribution of Semi-Central Evaporative Cooling Air-Conditioning System Based on the TRNSYS Platform," Energies, MDPI, vol. 11(5), pages 1-15, May.
    5. Pei, Wansheng & Zhang, Mingyi & Li, Shuangyang & Lai, Yuanming & Dong, Yuanhong & Jin, Long, 2019. "Laboratory investigation of the efficiency optimization of an inclined two-phase closed thermosyphon in ambient cool energy utilization," Renewable Energy, Elsevier, vol. 133(C), pages 1178-1187.
    6. Cruz-Peragón, F. & Gómez-de la Cruz, F.J. & Palomar-Carnicero, J.M. & López-García, R., 2022. "Optimal design of a hybrid ground source heat pump for an official building with thermal load imbalance and limited space for the ground heat exchanger," Renewable Energy, Elsevier, vol. 195(C), pages 381-394.
    7. Li, Hui & Ni, Long & Liu, Guang & Zhao, Zisang & Yao, Yang, 2019. "Feasibility study on applications of an Earth-air Heat Exchanger (EAHE) for preheating fresh air in severe cold regions," Renewable Energy, Elsevier, vol. 133(C), pages 1268-1284.
    8. Zhang, Yali & Li, Wenqi & Wu, Feng, 2020. "Does energy transition improve air quality? Evidence derived from China’s Winter Clean Heating Pilot (WCHP) project," Energy, Elsevier, vol. 206(C).
    9. Guanming Guo & Masaya Kamigaki & Yuuya Inoue & Keiya Nishida & Hitoshi Hongou & Masanobu Koutoku & Ryo Yamamoto & Hideaki Yokohata & Shinji Sumi & Yoichi Ogata, 2021. "Experimental Study and Conjugate Heat Transfer Simulation of Pulsating Flow in Straight and 90° Curved Square Pipes," Energies, MDPI, vol. 14(13), pages 1-20, July.
    10. Liu, Zhijian & Zhou, Qingxu & Tian, Zhiyong & He, Bao-jie & Jin, Guangya, 2019. "A comprehensive analysis on definitions, development, and policies of nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    11. Zhu, Ying & Yan, Xiaxia & Chen, Cong & Li, Yongping & Huang, Guohe & Li, Yexin, 2019. "Analysis of industry-air quality control in ecologically fragile coal-dependent cities by an uncertain Gaussian diffusion-Hurwicz criterion model," Energy Policy, Elsevier, vol. 132(C), pages 1191-1205.
    12. Balaji, K. & Iniyan, S. & Goic, Ranko, 2018. "Thermal performance of solar water heater using velocity enhancer," Renewable Energy, Elsevier, vol. 115(C), pages 887-895.
    13. Khamis Mansour, M., 2013. "Thermal analysis of novel minichannel-based solar flat-plate collector," Energy, Elsevier, vol. 60(C), pages 333-343.
    14. Naili, Nabiha & Kooli, Sami, 2021. "Solar-assisted ground source heat pump system operated in heating mode: A case study in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Xu, Wei & Liu, Changping & Li, Angui & Li, Ji & Qiao, Biao, 2020. "Feasibility and performance study on hybrid air source heat pump system for ultra-low energy building in severe cold region of China," Renewable Energy, Elsevier, vol. 146(C), pages 2124-2133.
    16. Liu, Zhijian & Li, Yuanwei & Xu, Wei & Yin, Hang & Gao, Jun & Jin, Guangya & Lun, Liyong & Jin, Guohui, 2019. "Performance and feasibility study of hybrid ground source heat pump system assisted with cooling tower for one office building based on one Shanghai case," Energy, Elsevier, vol. 173(C), pages 28-37.
    17. Diaconu, Bogdan M. & Varga, Szabolcs & Oliveira, Armando C., 2010. "Experimental study of natural convection heat transfer in a microencapsulated phase change material slurry," Energy, Elsevier, vol. 35(6), pages 2688-2693.
    18. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhou, Yanlai & Gao, Shida & Li, He, 2018. "Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1341-1352.
    19. Xiang Gou & Shian Liu & Yang Fu & Qiyan Zhang & Saima Iram & Yingfan Liu, 2018. "Experimental Study on the Performance of a Household Dual-Source Heat Pump Water Heater," Energies, MDPI, vol. 11(10), pages 1-18, October.
    20. Liu, Zhengguang & Wang, Wene & Chen, Yuntian & Wang, Lili & Guo, Zhiling & Yang, Xiaohu & Yan, Jinyue, 2023. "Solar harvest: Enhancing carbon sequestration and energy efficiency in solar greenhouses with PVT and GSHP systems," Renewable Energy, Elsevier, vol. 211(C), pages 112-125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:163:y:2018:i:c:p:1032-1049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.