IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2120-d236727.html
   My bibliography  Save this article

Modeling an Alternate Operational Ground Source Heat Pump for Combined Space Heating and Domestic Hot Water Power Sizing

Author

Listed:
  • Kaiser Ahmed

    (Department of Civil Engineering, Aalto University, 02150 Espoo, Finland)

  • Jevgeni Fadejev

    (Department of Civil Engineering and Architecture, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Jarek Kurnitski

    (Department of Civil Engineering, Aalto University, 02150 Espoo, Finland
    Department of Civil Engineering and Architecture, Tallinn University of Technology, 19086 Tallinn, Estonia)

Abstract

This study developed an alternate operational control system for ground source heat pumps (GSHP), which was applied to determine combined space heating and domestic hot water (DHW) power equations at design temperature. A domestic GSHP with an alternate control system was implemented in a whole building simulation model following the heat deficiency for space heating based on degree minute counting. A simulated GSHP system with 200 L storage tank resulted in 13%–26% power reduction compared to the calculation of the same system with existing European standards, which required separate space heating and DHW power calculation. The periodic operation utilized the thermal mass of the building with the same effect in the case of light and heavy-weight building because of the very short cycle of 30 min. Room temperatures dropped during the DHW heating cycle but kept within comfort range. The developed equations predict the total power as a function of occupancy, peak and average DHW consumption with variations of 0%–2.2% compared to the simulated results. DHW heating added the total power in modern low energy buildings by 21%–41% and 13%–26% at design temperatures of −15 °C and −26 °C, respectively. Internal heat gains reduced the power so that the reduction effect compensated the effect of DHW heating in the case of a house occupied by three people. The equations could be used for power sizing of any heat pump types, which has alternate operation principle and hydronic heating system.

Suggested Citation

  • Kaiser Ahmed & Jevgeni Fadejev & Jarek Kurnitski, 2019. "Modeling an Alternate Operational Ground Source Heat Pump for Combined Space Heating and Domestic Hot Water Power Sizing," Energies, MDPI, vol. 12(11), pages 1-26, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2120-:d:236727
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2120/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2120/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hervas-Blasco, Estefanía & Pitarch, Miquel & Navarro-Peris, Emilio & Corberán, José M., 2017. "Optimal sizing of a heat pump booster for sanitary hot water production to maximize benefit for the substitution of gas boilers," Energy, Elsevier, vol. 127(C), pages 558-570.
    2. Rodríguez-Hidalgo, M.C. & Rodríguez-Aumente, P.A. & Lecuona, A. & Legrand, M. & Ventas, R., 2012. "Domestic hot water consumption vs. solar thermal energy storage: The optimum size of the storage tank," Applied Energy, Elsevier, vol. 97(C), pages 897-906.
    3. Jukka Yrjölä & Eetu Laaksonen, 2015. "Domestic Hot Water Production with Ground Source Heat Pump in Apartment Buildings," Energies, MDPI, vol. 8(8), pages 1-20, August.
    4. Li, Huai & Xu, Wei & Yu, Zhen & Wu, Jianlin & Sun, Zhifeng, 2017. "Application analyze of a ground source heat pump system in a nearly zero energy building in China," Energy, Elsevier, vol. 125(C), pages 140-151.
    5. Wessam El-Baz & Peter Tzscheutschler & Ulrich Wagner, 2018. "Experimental Study and Modeling of Ground-Source Heat Pumps with Combi-Storage in Buildings," Energies, MDPI, vol. 11(5), pages 1-19, May.
    6. Matteo Rivoire & Alessandro Casasso & Bruno Piga & Rajandrea Sethi, 2018. "Assessment of Energetic, Economic and Environmental Performance of Ground-Coupled Heat Pumps," Energies, MDPI, vol. 11(8), pages 1-23, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paula Sankelo & Kaiser Ahmed & Alo Mikola & Jarek Kurnitski, 2022. "Renovation Results of Finnish Single-Family Renovation Subsidies: Oil Boiler Replacement with Heat Pumps," Energies, MDPI, vol. 15(20), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabina Kordana-Obuch & Michał Wojtoń & Mariusz Starzec & Beata Piotrowska, 2023. "Opportunities and Challenges for Research on Heat Recovery from Wastewater: Bibliometric and Strategic Analyses," Energies, MDPI, vol. 16(17), pages 1-36, September.
    2. Baeten, Brecht & Confrey, Thomas & Pecceu, Sébastien & Rogiers, Frederik & Helsen, Lieve, 2016. "A validated model for mixing and buoyancy in stratified hot water storage tanks for use in building energy simulations," Applied Energy, Elsevier, vol. 172(C), pages 217-229.
    3. Crespo, Alicia & Fernández, Cèsar & Vérez, David & Tarragona, Joan & Borri, Emiliano & Frazzica, Andrea & Cabeza, Luisa F. & de Gracia, Alvaro, 2023. "Thermal performance assessment and control optimization of a solar-driven seasonal sorption storage system for residential application," Energy, Elsevier, vol. 263(PA).
    4. Claudia Naldi & Enzo Zanchini, 2019. "Full-Time-Scale Fluid-to-Ground Thermal Response of a Borefield with Uniform Fluid Temperature," Energies, MDPI, vol. 12(19), pages 1-18, September.
    5. Rafał Figaj & Maciej Żołądek & Wojciech Goryl, 2020. "Dynamic Simulation and Energy Economic Analysis of a Household Hybrid Ground-Solar-Wind System Using TRNSYS Software," Energies, MDPI, vol. 13(14), pages 1-27, July.
    6. Kutlu, Cagri & Zhang, Yanan & Elmer, Theo & Su, Yuehong & Riffat, Saffa, 2020. "A simulation study on performance improvement of solar assisted heat pump hot water system by novel controllable crystallization of supercooled PCMs," Renewable Energy, Elsevier, vol. 152(C), pages 601-612.
    7. Alicia Crespo & Cèsar Fernández & Alvaro de Gracia & Andrea Frazzica, 2022. "Solar-Driven Sorption System for Seasonal Heat Storage under Optimal Control: Study for Different Climatic Zones," Energies, MDPI, vol. 15(15), pages 1-23, August.
    8. Badenes, Borja & Sanner, Burkhard & Mateo Pla, Miguel Ángel & Cuevas, José Manuel & Bartoli, Flavia & Ciardelli, Francesco & González, Rosa M. & Ghafar, Ali Nejad & Fontana, Patrick & Lemus Zuñiga, Le, 2020. "Development of advanced materials guided by numerical simulations to improve performance and cost-efficiency of borehole heat exchangers (BHEs)," Energy, Elsevier, vol. 201(C).
    9. Li, Jiarong & Li, Xiangdong & Wang, Yong & Tu, Jiyuan, 2021. "Long-term performance of a solar water heating system with a novel variable-volume tank," Renewable Energy, Elsevier, vol. 164(C), pages 230-241.
    10. Pengying Wang & Shuo Zhang, 2022. "Retrofitting Strategies Based on Orthogonal Array Testing to Develop Nearly Zero Energy Buildings," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    11. Wessam El-Baz & Lukas Mayerhofer & Peter Tzscheutschler & Ulrich Wagner, 2018. "Hardware in the Loop Real-Time Simulation for Heating Systems: Model Validation and Dynamics Analysis," Energies, MDPI, vol. 11(11), pages 1-15, November.
    12. Rachana Vidhi, 2018. "A Review of Underground Soil and Night Sky as Passive Heat Sink: Design Configurations and Models," Energies, MDPI, vol. 11(11), pages 1-24, October.
    13. Aleksandra Szulc-Wrońska & Barbara Tomaszewska, 2020. "Low Enthalpy Geothermal Resources for Local Sustainable Development: A Case Study in Poland," Energies, MDPI, vol. 13(19), pages 1-20, September.
    14. Johan Claesson & Saqib Javed, 2020. "Explicit Multipole Formula for the Local Thermal Resistance in an Energy Pile—The Line-Source Approximation," Energies, MDPI, vol. 13(20), pages 1-24, October.
    15. Bahria, Sofiane & Amirat, Madjid & Hamidat, Abderrahmen & El Ganaoui, Mohammed & El Amine Slimani, Mohamed, 2016. "Parametric study of solar heating and cooling systems in different climates of Algeria – A comparison between conventional and high-energy-performance buildings," Energy, Elsevier, vol. 113(C), pages 521-535.
    16. Nicola Bartolini & Alessandro Casasso & Carlo Bianco & Rajandrea Sethi, 2020. "Environmental and Economic Impact of the Antifreeze Agents in Geothermal Heat Exchangers," Energies, MDPI, vol. 13(21), pages 1-18, October.
    17. Asaee, S. Rasoul & Ugursal, V. Ismet & Beausoleil-Morrison, Ian & Ben-Abdallah, Noureddine, 2014. "Preliminary study for solar combisystem potential in Canadian houses," Applied Energy, Elsevier, vol. 130(C), pages 510-518.
    18. Song, Jeonghun & Oh, Si-Doek & Song, Seung Jin, 2019. "Effect of increased building-integrated renewable energy on building energy portfolio and energy flows in an urban district of Korea," Energy, Elsevier, vol. 189(C).
    19. Al-Habaibeh, Amin & Shakmak, Bubaker & Fanshawe, Simon, 2018. "Assessment of a novel technology for a stratified hot water energy storage – The water snake," Applied Energy, Elsevier, vol. 222(C), pages 189-198.
    20. Qiu, Guodong & Yu, Shipeng & Cai, Weihua, 2021. "A novel heating strategy and its optimization of a solar heating system for a commercial building in term of economy," Energy, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2120-:d:236727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.