IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i8p4909-4918.html
   My bibliography  Save this article

A numerical investigation of entropy generation in the entrance region of curved pipes at constant wall temperature

Author

Listed:
  • Amani, E.
  • Nobari, M.R.H.

Abstract

In this study, developing incompressible viscous flow and heat transfer in the curved pipes are studied numerically to analyze the entropy generation and thermodynamic optimization in the entrance region at a constant wall temperature. The governing equations including continuity, momentum and energy equations are solved using a second order finite difference method based on the projection algorithm. Entropy generation and optimal Reynolds number calculation based on the entropy generation minimization are carried out for two cases considering the two groups of non-dimensional parameters both numerically and analytically. The comparison of the numerical results in the entrance region with the analytical ones in the fully developed region indicates that both solutions predict nearly the same optimal Reynolds numbers, specially, for the first group of the non-dimensional parameters.

Suggested Citation

  • Amani, E. & Nobari, M.R.H., 2011. "A numerical investigation of entropy generation in the entrance region of curved pipes at constant wall temperature," Energy, Elsevier, vol. 36(8), pages 4909-4918.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:8:p:4909-4918
    DOI: 10.1016/j.energy.2011.05.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211003604
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.05.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Shuang-Ying & Chen, Yan & Li, You-Rong & Zeng, Dan-Ling, 2007. "Exergy transfer characteristics of forced convective heat transfer through a duct with constant wall heat flux," Energy, Elsevier, vol. 32(5), pages 686-696.
    2. Jarungthammachote, Sompop, 2010. "Entropy generation analysis for fully developed laminar convection in hexagonal duct subjected to constant heat flux," Energy, Elsevier, vol. 35(12), pages 5374-5379.
    3. Khaliq, Abdul, 2004. "Thermodynamic optimization of laminar viscous flow under convective heat-transfer through an isothermal walled duct," Applied Energy, Elsevier, vol. 78(3), pages 289-304, July.
    4. Bahiraei, Farid & Saray, Rahim Khoshbakhti & Salehzadeh, Aidin, 2011. "Investigation of potential of improvement of helical coils based on avoidable and unavoidable exergy destruction concepts," Energy, Elsevier, vol. 36(5), pages 3113-3119.
    5. Wu, Shuang-Ying & Li, You-Rong & Chen, Yan & Xiao, Lan, 2007. "Exergy transfer characteristics of forced convective heat transfer through a duct with constant wall temperature," Energy, Elsevier, vol. 32(12), pages 2385-2395.
    6. Satapathy, Ashok K., 2009. "Thermodynamic optimization of a coiled tube heat exchanger under constant wall heat flux condition," Energy, Elsevier, vol. 34(9), pages 1122-1126.
    7. Ko, T.H. & Ting, K., 2006. "Optimal Reynolds number for the fully developed laminar forced convection in a helical coiled tube," Energy, Elsevier, vol. 31(12), pages 2142-2152.
    8. Haddad, O.M. & Alkam, M.K. & Khasawneh, M.T., 2004. "Entropy generation due to laminar forced convection in the entrance region of a concentric annulus," Energy, Elsevier, vol. 29(1), pages 35-55.
    9. Naphon, Paisarn & Wongwises, Somchai, 2006. "A review of flow and heat transfer characteristics in curved tubes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 463-490, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahadi, Mohammad & Abbassi, Abbas, 2015. "Entropy generation analysis of laminar forced convection through uniformly heated helical coils considering effects of high length and heat flux and temperature dependence of thermophysical properties," Energy, Elsevier, vol. 82(C), pages 322-332.
    2. Mahian, Omid & Mahmud, Shohel & Heris, Saeed Zeinali, 2012. "Analysis of entropy generation between co-rotating cylinders using nanofluids," Energy, Elsevier, vol. 44(1), pages 438-446.
    3. Jafari, M. & Parhizkar, M.J. & Amani, E. & Naderan, H., 2016. "Inclusion of entropy generation minimization in multi-objective CFD optimization of diesel engines," Energy, Elsevier, vol. 114(C), pages 526-541.
    4. Nobari, M.R.H. & Kazemi, S. & Nourian, V. & Adib, M., 2016. "A numerical investigation of incompressible viscous flow in a helical square annulus," Applied Mathematics and Computation, Elsevier, vol. 277(C), pages 127-141.
    5. Arjmandi, H.R. & Amani, E., 2015. "A numerical investigation of the entropy generation in and thermodynamic optimization of a combustion chamber," Energy, Elsevier, vol. 81(C), pages 706-718.
    6. Hajmohammadi, M.R. & Eskandari, H. & Saffar-Avval, M. & Campo, A., 2013. "A new configuration of bend tubes for compound optimization of heat and fluid flow," Energy, Elsevier, vol. 62(C), pages 418-424.
    7. Mwesigye, Aggrey & Bello-Ochende, Tunde & Meyer, Josua P., 2013. "Numerical investigation of entropy generation in a parabolic trough receiver at different concentration ratios," Energy, Elsevier, vol. 53(C), pages 114-127.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajmohammadi, M.R. & Eskandari, H. & Saffar-Avval, M. & Campo, A., 2013. "A new configuration of bend tubes for compound optimization of heat and fluid flow," Energy, Elsevier, vol. 62(C), pages 418-424.
    2. Ahadi, Mohammad & Abbassi, Abbas, 2015. "Entropy generation analysis of laminar forced convection through uniformly heated helical coils considering effects of high length and heat flux and temperature dependence of thermophysical properties," Energy, Elsevier, vol. 82(C), pages 322-332.
    3. San, J.-Y., 2010. "Second-law performance of heat exchangers for waste heat recovery," Energy, Elsevier, vol. 35(5), pages 1936-1945.
    4. Bahiraei, Farid & Saray, Rahim Khoshbakhti & Salehzadeh, Aidin, 2011. "Investigation of potential of improvement of helical coils based on avoidable and unavoidable exergy destruction concepts," Energy, Elsevier, vol. 36(5), pages 3113-3119.
    5. Li, Zhouhang & Zhai, Yuling & Li, Kongzhai & Wang, Hua & Lu, Junfu, 2016. "A quantitative study on the interaction between curvature and buoyancy effects in helically coiled heat exchangers of supercritical CO2 Rankine cycles," Energy, Elsevier, vol. 116(P1), pages 661-676.
    6. Khoshvaght-Aliabadi, M. & Tavasoli, M. & Hormozi, F., 2015. "Comparative analysis on thermal–hydraulic performance of curved tubes: Different geometrical parameters and working fluids," Energy, Elsevier, vol. 91(C), pages 588-600.
    7. Xu, Mingtian, 2012. "Variational principles in terms of entransy for heat transfer," Energy, Elsevier, vol. 44(1), pages 973-977.
    8. Huminic, Gabriela & Huminic, Angel, 2016. "Heat transfer and flow characteristics of conventional fluids and nanofluids in curved tubes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1327-1347.
    9. Arjmandi, H.R. & Amani, E., 2015. "A numerical investigation of the entropy generation in and thermodynamic optimization of a combustion chamber," Energy, Elsevier, vol. 81(C), pages 706-718.
    10. Sun, Wei & Cheng, Qinglin & Li, Zhidong & Wang, Zhihua & Gan, Yifan & Liu, Yang & Shao, Shuai, 2019. "Study on Coil Optimization on the Basis of Heating Effect and Effective Energy Evaluation during Oil Storage Process," Energy, Elsevier, vol. 185(C), pages 505-520.
    11. Roy, Monisha & Roy, S. & Basak, Tanmay, 2015. "Role of various moving walls on energy transfer rates via heat flow visualization during mixed convection in square cavities," Energy, Elsevier, vol. 82(C), pages 1-22.
    12. Zheng, Ying & Cai, Jiu-ju & Dong, Hui & Feng, Jun-sheng & Liu, Jing-yu, 2019. "Experimental investigation of volumetric exergy transfer coefficient in vertical moving bed for sinter waste heat recovery," Energy, Elsevier, vol. 167(C), pages 428-439.
    13. Feng, Jun-sheng & Dong, Hui & Gao, Jian-ye & Liu, Jing-yu & Liang, Kai, 2016. "Exergy transfer characteristics of gas-solid heat transfer through sinter bed layer in vertical tank," Energy, Elsevier, vol. 111(C), pages 154-164.
    14. Ren, Ting & Sun, Yang & Zhang, Jiye & Yan, Gaocheng & Mu, Huaiping & Liu, Shi, 2016. "Optimal energy use of the collector tube in solar power tower plant," Renewable Energy, Elsevier, vol. 93(C), pages 525-535.
    15. Li, Zhouhang & Zhai, Yuling & Bi, Dapeng & Li, Kongzhai & Wang, Hua & Lu, Junfu, 2017. "Orientation effect in helical coils with smooth and rib-roughened wall: Toward improved gas heaters for supercritical carbon dioxide Rankine cycles," Energy, Elsevier, vol. 140(P1), pages 530-545.
    16. Colorado, D. & Ali, M.E. & García-Valladares, O. & Hernández, J.A., 2011. "Heat transfer using a correlation by neural network for natural convection from vertical helical coil in oil and glycerol/water solution," Energy, Elsevier, vol. 36(2), pages 854-863.
    17. Han, Yong & Wang, Xue-sheng & Zhang, Zhao & Zhang, Hao-nan, 2020. "Multi-objective optimization of geometric parameters for the helically coiled tube using Markowitz optimization theory," Energy, Elsevier, vol. 192(C).
    18. Jarungthammachote, Sompop, 2010. "Entropy generation analysis for fully developed laminar convection in hexagonal duct subjected to constant heat flux," Energy, Elsevier, vol. 35(12), pages 5374-5379.
    19. Kurtbaş, İrfan & Celik, Nevin & Dinçer, İbrahim, 2010. "Exergy transfer in a porous rectangular channel," Energy, Elsevier, vol. 35(1), pages 451-460.
    20. Bakhshmand, Sina Kazemi & Saray, Rahim Khoshbakhti & Bahlouli, Keyvan & Eftekhari, Hajar & Ebrahimi, Afshin, 2015. "Exergoeconomic analysis and optimization of a triple-pressure combined cycle plant using evolutionary algorithm," Energy, Elsevier, vol. 93(P1), pages 555-567.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:8:p:4909-4918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.