IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v111y2016icp154-164.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Exergy transfer characteristics of gas-solid heat transfer through sinter bed layer in vertical tank

Author

Listed:
  • Feng, Jun-sheng
  • Dong, Hui
  • Gao, Jian-ye
  • Liu, Jing-yu
  • Liang, Kai

Abstract

The examination of exergy transfer characteristics caused by gas-solid heat transfer through sinter bed layer in vertical tank has been presented. Correlations involving relevant variables to predict the mean exergy transfer coefficient, the mean exergy transfer Nusselt number and the non-dimensional exergy flux have been derived by applying the second law of thermodynamics and non-equilibrium thermodynamics theory. The relationships of mean exergy transfer Nusselt number with the heat transfer Nusselt number, Reynolds number, the non-dimensional heat flux and the non-dimensional pressure drop are determined. The experimental results of exergy transfer characteristics in sinter bed layer with different gas superficial velocity, sinter particle diameter and bed layer height are obtained from homemade gas-solid heat transfer setup, and the effects of air outlet temperature, non-dimensional temperature and Reynolds number on the exergy transfer characteristics are analyzed. The research results show that for a given experimental condition, the mean exergy transfer Nusselt number gradually decreases with the increase of Reynolds number and sinter bed layer height. The mean exergy transfer Nusselt number would be less than zero for a lower air outlet temperature, which is pointless for gas-solid heat transfer process in sinter bed layer.

Suggested Citation

  • Feng, Jun-sheng & Dong, Hui & Gao, Jian-ye & Liu, Jing-yu & Liang, Kai, 2016. "Exergy transfer characteristics of gas-solid heat transfer through sinter bed layer in vertical tank," Energy, Elsevier, vol. 111(C), pages 154-164.
  • Handle: RePEc:eee:energy:v:111:y:2016:i:c:p:154-164
    DOI: 10.1016/j.energy.2016.05.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216307320
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.05.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Shuang-Ying & Chen, Yan & Li, You-Rong & Zeng, Dan-Ling, 2007. "Exergy transfer characteristics of forced convective heat transfer through a duct with constant wall heat flux," Energy, Elsevier, vol. 32(5), pages 686-696.
    2. Lalji, Mukesh Kumar & Sarviya, R.M. & Bhagoria, J.L., 2012. "Exergy evaluation of packed bed solar air heater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6262-6267.
    3. Wang, S.P. & Chen, Q.L. & Yin, Q.H. & Hua, B., 2005. "A phenomenological equation of exergy transfer and its application," Energy, Elsevier, vol. 30(1), pages 85-95.
    4. Sarker, Md. Sazzat Hossain & Ibrahim, Mohd Nordin & Abdul Aziz, Norashikin & Punan, Mohd Salleh, 2015. "Energy and exergy analysis of industrial fluidized bed drying of paddy," Energy, Elsevier, vol. 84(C), pages 131-138.
    5. Kurtbaş, İrfan & Celik, Nevin & Dinçer, İbrahim, 2010. "Exergy transfer in a porous rectangular channel," Energy, Elsevier, vol. 35(1), pages 451-460.
    6. Wu, Shuang-Ying & Li, You-Rong & Chen, Yan & Xiao, Lan, 2007. "Exergy transfer characteristics of forced convective heat transfer through a duct with constant wall temperature," Energy, Elsevier, vol. 32(12), pages 2385-2395.
    7. Karellas, S. & Leontaritis, A.-D. & Panousis, G. & Bellos, E. & Kakaras, E., 2013. "Energetic and exergetic analysis of waste heat recovery systems in the cement industry," Energy, Elsevier, vol. 58(C), pages 147-156.
    8. Liu, Yan & Yang, Jian & Wang, Jin & Cheng, Zhi-long & Wang, Qiu-wang, 2014. "Energy and exergy analysis for waste heat cascade utilization in sinter cooling bed," Energy, Elsevier, vol. 67(C), pages 370-380.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zude Cheng & Haitao Wang & Junsheng Feng & Yongfang Xia & Hui Dong, 2021. "Energy and Exergy Efficiency Analysis of Fluid Flow and Heat Transfer in Sinter Vertical Cooler," Energies, MDPI, vol. 14(15), pages 1-18, July.
    2. Chenyi Xu & Zhichun Liu & Shicheng Wang & Wei Liu, 2019. "Numerical Simulation and Optimization of Waste Heat Recovery in a Sinter Vertical Tank," Energies, MDPI, vol. 12(3), pages 1-19, January.
    3. Zheng, Ying & Cai, Jiu-ju & Dong, Hui & Feng, Jun-sheng & Liu, Jing-yu, 2019. "Experimental investigation of volumetric exergy transfer coefficient in vertical moving bed for sinter waste heat recovery," Energy, Elsevier, vol. 167(C), pages 428-439.
    4. Junpeng Fu & Jiuju Cai, 2020. "Parametric Study on the Flow Profiles of Vertical Sinter Cooling Bed Using the DEM and Taguchi Method for Waste Heat Recovery," Energies, MDPI, vol. 13(19), pages 1-34, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Ying & Cai, Jiu-ju & Dong, Hui & Feng, Jun-sheng & Liu, Jing-yu, 2019. "Experimental investigation of volumetric exergy transfer coefficient in vertical moving bed for sinter waste heat recovery," Energy, Elsevier, vol. 167(C), pages 428-439.
    2. Amani, E. & Nobari, M.R.H., 2011. "A numerical investigation of entropy generation in the entrance region of curved pipes at constant wall temperature," Energy, Elsevier, vol. 36(8), pages 4909-4918.
    3. Hajmohammadi, M.R. & Eskandari, H. & Saffar-Avval, M. & Campo, A., 2013. "A new configuration of bend tubes for compound optimization of heat and fluid flow," Energy, Elsevier, vol. 62(C), pages 418-424.
    4. Sun, Wei & Cheng, Qinglin & Li, Zhidong & Wang, Zhihua & Gan, Yifan & Liu, Yang & Shao, Shuai, 2019. "Study on Coil Optimization on the Basis of Heating Effect and Effective Energy Evaluation during Oil Storage Process," Energy, Elsevier, vol. 185(C), pages 505-520.
    5. San, J.-Y., 2010. "Second-law performance of heat exchangers for waste heat recovery," Energy, Elsevier, vol. 35(5), pages 1936-1945.
    6. Wu, Shuang-Ying & Li, You-Rong & Chen, Yan & Xiao, Lan, 2007. "Exergy transfer characteristics of forced convective heat transfer through a duct with constant wall temperature," Energy, Elsevier, vol. 32(12), pages 2385-2395.
    7. Ren, Ting & Sun, Yang & Zhang, Jiye & Yan, Gaocheng & Mu, Huaiping & Liu, Shi, 2016. "Optimal energy use of the collector tube in solar power tower plant," Renewable Energy, Elsevier, vol. 93(C), pages 525-535.
    8. Cui, Zheng & Shao, Wei & Chen, Zhaoyou & Cheng, Lin, 2017. "Mathematical model and numerical solutions for the coupled gas–solid heat transfer process in moving packed beds," Applied Energy, Elsevier, vol. 206(C), pages 1297-1308.
    9. Kurtbaş, İrfan & Celik, Nevin & Dinçer, İbrahim, 2010. "Exergy transfer in a porous rectangular channel," Energy, Elsevier, vol. 35(1), pages 451-460.
    10. Jung, Chung Woo & Song, Joo Young & Kang, Yong Tae, 2018. "Study on ammonia/water hybrid absorption/compression heat pump cycle to produce high temperature process water," Energy, Elsevier, vol. 145(C), pages 458-467.
    11. Li, Pengcheng & Cao, Qing & Li, Jing & Lin, Haiwei & Wang, Yandong & Gao, Guangtao & Pei, Gang & Jie, Desuan & Liu, Xunfen, 2021. "An innovative approach to recovery of fluctuating industrial exhaust heat sources using cascade Rankine cycle and two-stage accumulators," Energy, Elsevier, vol. 228(C).
    12. Liya Ren & Jianyu Liu & Huaixin Wang, 2020. "Thermodynamic Optimization of a Waste Heat Power System under Economic Constraint," Energies, MDPI, vol. 13(13), pages 1-23, July.
    13. Mikulčić, Hrvoje & Vujanović, Milan & Ashhab, Moh'd Sami & Duić, Neven, 2014. "Large eddy simulation of a two-phase reacting swirl flow inside a cement cyclone," Energy, Elsevier, vol. 75(C), pages 89-96.
    14. Kai Yang & Hongguang Zhang & Songsong Song & Jian Zhang & Yuting Wu & Yeqiang Zhang & Hongjin Wang & Ying Chang & Chen Bei, 2014. "Performance Analysis of the Vehicle Diesel Engine-ORC Combined System Based on a Screw Expander," Energies, MDPI, vol. 7(5), pages 1-20, May.
    15. Pahlevaninezhad, Masoud & Davazdah Emami, Mohsen & Panjepour, Masoud, 2014. "The effects of kinetic parameters on combustion characteristics in a sintering bed," Energy, Elsevier, vol. 73(C), pages 160-176.
    16. Utlu, Zafer, 2015. "Investigation of the potential for heat recovery at low, medium, and high stages in the Turkish industrial sector (TIS): An application," Energy, Elsevier, vol. 81(C), pages 394-405.
    17. Liu, Yan & Yang, Jian & Wang, Jin & Cheng, Zhi-long & Wang, Qiu-wang, 2014. "Energy and exergy analysis for waste heat cascade utilization in sinter cooling bed," Energy, Elsevier, vol. 67(C), pages 370-380.
    18. Yali Wang & Haidong Yang & Kangkang Xu, 2020. "Thermal Performance Combined with Cooling System Parameters Study for a Roller Kiln Based on Energy-Exergy Analysis," Energies, MDPI, vol. 13(15), pages 1-31, July.
    19. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    20. Xue, Xiaodi & Guo, Cong & Du, Xiaoze & Yang, Lijun & Yang, Yongping, 2015. "Thermodynamic analysis and optimization of a two-stage organic Rankine cycle for liquefied natural gas cryogenic exergy recovery," Energy, Elsevier, vol. 83(C), pages 778-787.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:111:y:2016:i:c:p:154-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.