IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v81y2015icp394-405.html
   My bibliography  Save this article

Investigation of the potential for heat recovery at low, medium, and high stages in the Turkish industrial sector (TIS): An application

Author

Listed:
  • Utlu, Zafer

Abstract

In this study, the potential for waste heat recovery is examined based on real data from 1990 to 2011 (a 21-year period) for processes at low-, medium- and high-temperature levels. The first part of this study included a theoretical analysis for determining the potential for heat recovery at these temperature stages. Second part stated an application in the industrial sector. This study is conducted using actual data for this sector from 1990 to 2011. The total available energy recovery from waste heat recovery appliances for products, flue gas and wall heat recovery was calculated to be 224–503 PJ over the years studied. The available waste heat potential from the total energy in this sector is determined to be 36 to 40% for these years. The technical potential is estimated to be 55 to 65% of these values. The total technical-potential waste energy recovery in the low, medium, and high temperature stages using waste heat recovery appliances for products, flue gas and wall heat recovery was estimated to be from 224 PJ to 503 PJ over the years studied. Usage of technology device according to efficiencies for the sector was estimated to be 22.40 PJ/year to 67.45 PJ/year.

Suggested Citation

  • Utlu, Zafer, 2015. "Investigation of the potential for heat recovery at low, medium, and high stages in the Turkish industrial sector (TIS): An application," Energy, Elsevier, vol. 81(C), pages 394-405.
  • Handle: RePEc:eee:energy:v:81:y:2015:i:c:p:394-405
    DOI: 10.1016/j.energy.2014.12.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214014248
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.12.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Jiangfeng & Xu, Mingtian & Cheng, Lin, 2010. "Thermodynamic analysis of waste heat power generation system," Energy, Elsevier, vol. 35(7), pages 2824-2835.
    2. Carcasci, Carlo & Ferraro, Riccardo & Miliotti, Edoardo, 2014. "Thermodynamic analysis of an organic Rankine cycle for waste heat recovery from gas turbines," Energy, Elsevier, vol. 65(C), pages 91-100.
    3. Saygin, D. & Patel, M.K. & Worrell, E. & Tam, C. & Gielen, D.J., 2011. "Potential of best practice technology to improve energy efficiency in the global chemical and petrochemical sector," Energy, Elsevier, vol. 36(9), pages 5779-5790.
    4. Meng, Fankai & Chen, Lingen & Sun, Fengrui & Yang, Bo, 2014. "Thermoelectric power generation driven by blast furnace slag flushing water," Energy, Elsevier, vol. 66(C), pages 965-972.
    5. Brown, Sam, 1996. "Single-site and industrial-scale schemes," Applied Energy, Elsevier, vol. 53(1-2), pages 149-155.
    6. Ebrahimi, Khosrow & Jones, Gerard F. & Fleischer, Amy S., 2014. "A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 622-638.
    7. Utlu, Zafer & Hepbasli, Arif, 2007. "A review and assessment of the energy utilization efficiency in the Turkish industrial sector using energy and exergy analysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1438-1459, September.
    8. Mardiana-Idayu, A. & Riffat, S.B., 2012. "Review on heat recovery technologies for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1241-1255.
    9. Karellas, S. & Leontaritis, A.-D. & Panousis, G. & Bellos, E. & Kakaras, E., 2013. "Energetic and exergetic analysis of waste heat recovery systems in the cement industry," Energy, Elsevier, vol. 58(C), pages 147-156.
    10. Stijepovic, Mirko Z. & Linke, Patrick, 2011. "Optimal waste heat recovery and reuse in industrial zones," Energy, Elsevier, vol. 36(7), pages 4019-4031.
    11. Zhang, Jianling & Wang, Guoshun, 2008. "Energy saving technologies and productive efficiency in the Chinese iron and steel sector," Energy, Elsevier, vol. 33(4), pages 525-537.
    12. Saleh, Bahaa & Koglbauer, Gerald & Wendland, Martin & Fischer, Johann, 2007. "Working fluids for low-temperature organic Rankine cycles," Energy, Elsevier, vol. 32(7), pages 1210-1221.
    13. Le Moullec, Yann, 2013. "Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 49(C), pages 32-46.
    14. Utlu, Zafer & Kincay, Olcay, 2013. "An assessment of a pulp and paper mill through energy and exergy analyses," Energy, Elsevier, vol. 57(C), pages 565-573.
    15. Lolos, P.A. & Rogdakis, E.D., 2009. "A Kalina power cycle driven by renewable energy sources," Energy, Elsevier, vol. 34(4), pages 457-464.
    16. BoroumandJazi, G. & Rismanchi, B. & Saidur, R., 2013. "A review on exergy analysis of industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 198-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qi & Zhao, Xiaoyu & Lu, Hongyou & Ni, Tuanjie & Li, Yu, 2017. "Waste energy recovery and energy efficiency improvement in China’s iron and steel industry," Applied Energy, Elsevier, vol. 191(C), pages 502-520.
    2. Begum Erten & Zafer Utlu, 2020. "Photovoltaic system configurations: an occupational health and safety assessment," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 809-828, August.
    3. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-López & Mathias Glaus & Sara Patricia Ibarra-Zavaleta, 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    2. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 256-268.
    3. Meng, Fankai & Chen, Lingen & Feng, Yuanli & Xiong, Bing, 2017. "Thermoelectric generator for industrial gas phase waste heat recovery," Energy, Elsevier, vol. 135(C), pages 83-90.
    4. Kai Yang & Hongguang Zhang & Songsong Song & Jian Zhang & Yuting Wu & Yeqiang Zhang & Hongjin Wang & Ying Chang & Chen Bei, 2014. "Performance Analysis of the Vehicle Diesel Engine-ORC Combined System Based on a Screw Expander," Energies, MDPI, vol. 7(5), pages 1-20, May.
    5. Amini, Ali & Mirkhani, Nima & Pakjesm Pourfard, Pedram & Ashjaee, Mehdi & Khodkar, Mohammad Amin, 2015. "Thermo-economic optimization of low-grade waste heat recovery in Yazd combined-cycle power plant (Iran) by a CO2 transcritical Rankine cycle," Energy, Elsevier, vol. 86(C), pages 74-84.
    6. Yali Wang & Haidong Yang & Kangkang Xu, 2020. "Thermal Performance Combined with Cooling System Parameters Study for a Roller Kiln Based on Energy-Exergy Analysis," Energies, MDPI, vol. 13(15), pages 1-31, July.
    7. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    8. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    9. Eyidogan, Muharrem & Canka Kilic, Fatma & Kaya, Durmus & Coban, Volkan & Cagman, Selman, 2016. "Investigation of Organic Rankine Cycle (ORC) technologies in Turkey from the technical and economic point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 885-895.
    10. Wang, Dabiao & Ma, Yuezheng & Tian, Ran & Duan, Jie & Hu, Busong & Shi, Lin, 2018. "Thermodynamic evaluation of an ORC system with a Low Pressure Saturated Steam heat source," Energy, Elsevier, vol. 149(C), pages 375-385.
    11. Roy, J.P. & Misra, Ashok, 2012. "Parametric optimization and performance analysis of a regenerative Organic Rankine Cycle using R-123 for waste heat recovery," Energy, Elsevier, vol. 39(1), pages 227-235.
    12. Calise, Francesco & Dentice d'Accadia, Massimo & Macaluso, Adriano & Vanoli, Laura & Piacentino, Antonio, 2016. "A novel solar-geothermal trigeneration system integrating water desalination: Design, dynamic simulation and economic assessment," Energy, Elsevier, vol. 115(P3), pages 1533-1547.
    13. Bao, Junjiang & Zhao, Li, 2012. "Exergy analysis and parameter study on a novel auto-cascade Rankine cycle," Energy, Elsevier, vol. 48(1), pages 539-547.
    14. Raul Arango Miranda & Robert Hausler & Rabindranarth Romero Lopez & Mathias Glaus & Jose Ramon Pasillas-Diaz, 2020. "Testing the Environmental Kuznets Curve Hypothesis in North America’s Free Trade Agreement (NAFTA) Countries," Energies, MDPI, vol. 13(12), pages 1-13, June.
    15. Li, You-Rong & Wang, Xiao-Qiong & Li, Xiao-Ping & Wang, Jian-Ning, 2014. "Performance analysis of a novel power/refrigerating combined-system driven by the low-grade waste heat using different refrigerants," Energy, Elsevier, vol. 73(C), pages 543-553.
    16. Francesco Calise & Davide Capuano & Laura Vanoli, 2015. "Dynamic Simulation and Exergo-Economic Optimization of a Hybrid Solar–Geothermal Cogeneration Plant," Energies, MDPI, vol. 8(4), pages 1-41, April.
    17. Zhang, Bing J. & Tang, Qiao Q. & Zhao, Yue & Chen, Yu Q. & Chen, Qing L. & Floudas, Christodoulos A., 2018. "Multi-level energy integration between units, plants and sites for natural gas industrial parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 1-15.
    18. Ho, Tony & Mao, Samuel S. & Greif, Ralph, 2012. "Comparison of the Organic Flash Cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy," Energy, Elsevier, vol. 42(1), pages 213-223.
    19. Shu, Gequn & Zhao, Jian & Tian, Hua & Liang, Xingyu & Wei, Haiqiao, 2012. "Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic rankine cycle utilizing R123," Energy, Elsevier, vol. 45(1), pages 806-816.
    20. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:81:y:2015:i:c:p:394-405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.