IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v257y2022ics036054422201430x.html
   My bibliography  Save this article

Hydrothermal challenges in low-temperature networks with distributed heat pumps

Author

Listed:
  • Sommer, Tobias
  • Sotnikov, Artem
  • Sulzer, Matthias
  • Scholz, Volkher
  • Mischler, Stefan
  • Rismanchi, Behzad
  • Gjoka, Kristian
  • Mennel, Stefan

Abstract

Low-temperature networks (≤60 °C) combined with heat pumps allow for efficient heating and cooling of buildings and thermal energy exchange between buildings. Thus, such networks are a key technology to reduce the carbon footprint of urban areas. However, they are far more complex in operation than traditional district heating networks at high temperatures (>60 °C). To simplify future network planning, we present various challenges of low-temperature networks and offer solutions. We study the dependency of heat pump efficiencies on flow rates across the evaporator and present methods to cope with flow variations through heat pumps during operation. We introduce the concept “agent authority” and show that for an agent authority >≈0.7, flow variations during dynamic operation are within ≈20%. In a first case study, the total electricity consumption of a thermal network is minimised by reducing the flow rates through the heat pumps by ≈ 14%, however having only minor impact (0.3%) on the total electricity consumption. In a second case study, a decision matrix for selected network types is developed. We show that apart from quantifiable parameters such as energy efficiency or costs, qualitative criteria such as control and resilience are relevant in decision making.

Suggested Citation

  • Sommer, Tobias & Sotnikov, Artem & Sulzer, Matthias & Scholz, Volkher & Mischler, Stefan & Rismanchi, Behzad & Gjoka, Kristian & Mennel, Stefan, 2022. "Hydrothermal challenges in low-temperature networks with distributed heat pumps," Energy, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:energy:v:257:y:2022:i:c:s036054422201430x
    DOI: 10.1016/j.energy.2022.124527
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422201430X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124527?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sommer, Tobias & Sulzer, Matthias & Wetter, Michael & Sotnikov, Artem & Mennel, Stefan & Stettler, Christoph, 2020. "The reservoir network: A new network topology for district heating and cooling," Energy, Elsevier, vol. 199(C).
    2. Rismanchi, B., 2017. "District energy network (DEN), current global status and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 571-579.
    3. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    4. Zarin Pass, R. & Wetter, M. & Piette, M.A., 2018. "A thermodynamic analysis of a novel bidirectional district heating and cooling network," Energy, Elsevier, vol. 144(C), pages 20-30.
    5. Wirtz, Marco & Kivilip, Lukas & Remmen, Peter & Müller, Dirk, 2020. "5th Generation District Heating: A novel design approach based on mathematical optimization," Applied Energy, Elsevier, vol. 260(C).
    6. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).
    7. Werner, Sven, 2016. "European space cooling demands," Energy, Elsevier, vol. 110(C), pages 148-156.
    8. Østergaard, Poul Alberg & Werner, Sven & Dyrelund, Anders & Lund, Henrik & Arabkoohsar, Ahmad & Sorknæs, Peter & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Mathiesen, Brian Vad, 2022. "The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect," Energy, Elsevier, vol. 253(C).
    9. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    10. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    11. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    12. Wirtz, Marco & Neumaier, Lisa & Remmen, Peter & Müller, Dirk, 2021. "Temperature control in 5th generation district heating and cooling networks: An MILP-based operation optimization," Applied Energy, Elsevier, vol. 288(C).
    13. Buffa, Simone & Cozzini, Marco & D’Antoni, Matteo & Baratieri, Marco & Fedrizzi, Roberto, 2019. "5th generation district heating and cooling systems: A review of existing cases in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 504-522.
    14. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    15. Sorknæs, Peter & Østergaard, Poul Alberg & Thellufsen, Jakob Zinck & Lund, Henrik & Nielsen, Steffen & Djørup, Søren & Sperling, Karl, 2020. "The benefits of 4th generation district heating in a 100% renewable energy system," Energy, Elsevier, vol. 213(C).
    16. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maccarini, Alessandro & Sotnikov, Artem & Sommer, Tobias & Wetter, Michael & Sulzer, Matthias & Afshari, Alireza, 2023. "Influence of building heat distribution temperatures on the energy performance and sizing of 5th generation district heating and cooling networks," Energy, Elsevier, vol. 275(C).
    2. Belliardi, Marco & Caputo, Paola & Ferla, Giulio & Cereghetti, Nerio & Antonioli Mantegazzini, Barbara, 2023. "An innovative application of 5GDHC: A techno-economic assessment of shallow geothermal systems potential in different European climates," Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gjoka, Kristian & Rismanchi, Behzad & Crawford, Robert H., 2023. "Fifth-generation district heating and cooling systems: A review of recent advancements and implementation barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    2. Abugabbara, Marwan & Javed, Saqib & Johansson, Dennis, 2022. "A simulation model for the design and analysis of district systems with simultaneous heating and cooling demands," Energy, Elsevier, vol. 261(PA).
    3. Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).
    4. Wirtz, Marco, 2023. "nPro: A web-based planning tool for designing district energy systems and thermal networks," Energy, Elsevier, vol. 268(C).
    5. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).
    6. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    7. Sommer, Tobias & Sulzer, Matthias & Wetter, Michael & Sotnikov, Artem & Mennel, Stefan & Stettler, Christoph, 2020. "The reservoir network: A new network topology for district heating and cooling," Energy, Elsevier, vol. 199(C).
    8. Maccarini, Alessandro & Sotnikov, Artem & Sommer, Tobias & Wetter, Michael & Sulzer, Matthias & Afshari, Alireza, 2023. "Influence of building heat distribution temperatures on the energy performance and sizing of 5th generation district heating and cooling networks," Energy, Elsevier, vol. 275(C).
    9. Edtmayer, Hermann & Nageler, Peter & Heimrath, Richard & Mach, Thomas & Hochenauer, Christoph, 2021. "Investigation on sector coupling potentials of a 5th generation district heating and cooling network," Energy, Elsevier, vol. 230(C).
    10. Reiners, Tobias & Gross, Michel & Altieri, Lisa & Wagner, Hermann-Josef & Bertsch, Valentin, 2021. "Heat pump efficiency in fifth generation ultra-low temperature district heating networks using a wastewater heat source," Energy, Elsevier, vol. 236(C).
    11. Zhou, Suyang & Chen, Jinyi & Gu, Wei & Fang, Xin & Yuan, Xiaodong, 2023. "An adaptive space-step simulation approach for steam heating network considering condensate loss," Energy, Elsevier, vol. 263(PA).
    12. Werner, Sven, 2022. "Network configurations for implemented low-temperature district heating," Energy, Elsevier, vol. 254(PB).
    13. Angelidis, O. & Ioannou, A. & Friedrich, D. & Thomson, A. & Falcone, G., 2023. "District heating and cooling networks with decentralised energy substations: Opportunities and barriers for holistic energy system decarbonisation," Energy, Elsevier, vol. 269(C).
    14. Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
    15. Brunt, Nicholas & Duquette, Jean & O'Brien, William, 2023. "Techno-economic and environmental performance of two state-of-the-art solar-assisted district energy system topologies," Energy, Elsevier, vol. 276(C).
    16. Stanislav Chicherin & Vladislav Mašatin & Andres Siirde & Anna Volkova, 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy," Energies, MDPI, vol. 13(17), pages 1-15, September.
    17. Erica Corradi & Mosè Rossi & Alice Mugnini & Anam Nadeem & Gabriele Comodi & Alessia Arteconi & Danilo Salvi, 2021. "Energy, Environmental, and Economic Analyses of a District Heating (DH) Network from Both Thermal Plant and End-Users’ Prospective: An Italian Case Study," Energies, MDPI, vol. 14(22), pages 1-25, November.
    18. Hirsch, Hauke & Nicolai, Andreas, 2022. "An efficient numerical solution method for detailed modelling of large 5th generation district heating and cooling networks," Energy, Elsevier, vol. 255(C).
    19. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    20. Gross, Michel & Karbasi, Babak & Reiners, Tobias & Altieri, Lisa & Wagner, Hermann-Josef & Bertsch, Valentin, 2021. "Implementing prosumers into heating networks," Energy, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:257:y:2022:i:c:s036054422201430x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.