IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v208y2025ics1364032124008001.html
   My bibliography  Save this article

A review on photocatalytic seawater splitting with efficient and selective catalysts for hydrogen evolution reaction

Author

Listed:
  • Gupta, Aayush
  • Likozar, Blaz
  • Jaidka, Sachin

Abstract

The rising global demand for clean and renewable energy has spurred interest in innovative technologies capable of addressing both energy production and environmental challenges. Among these, photocatalytic seawater splitting has emerged as a highly promising approach for generating hydrogen, a clean fuel, by harnessing sunlight. Unlike traditional water-splitting techniques that depend on freshwater resources, seawater splitting offers a sustainable alternative by utilizing the vast and readily available oceanic reserves. This process leverages advanced photocatalytic materials, such as metal oxides (e.g., TiO₂, ZnO), perovskites, and 2D materials like graphitic carbon nitride (g-C₃N₄), to enhance the efficiency of the hydrogen evolution reaction (HER). This review provides a comprehensive analysis of the latest advancements in photocatalytic seawater splitting, focusing on catalyst design, performance optimization, and overcoming key challenges such as corrosion, photocatalyst stability, and the detrimental effects of seawater components, including chloride ions and metal cations, on hydrogen production. Special attention is given to the role of novel materials, such as nanosheet arrays, metal-organic frameworks (MOFs), and defect-engineered catalysts, in improving charge separation, reducing recombination rates, and enhancing light absorption under solar irradiation. Furthermore, the review addresses the impact of seawater composition, including the presence of ions such as Na⁺, Mg2⁺, and Ca2⁺, on the photocatalytic process, and discusses strategies to mitigate undesirable side reactions, such as chlorine evolution. The commercial potential of photocatalytic seawater splitting is also considered, highlighting its scalability and integration into renewable energy infrastructures to produce hydrogen as a viable alternative to fossil fuels.

Suggested Citation

  • Gupta, Aayush & Likozar, Blaz & Jaidka, Sachin, 2025. "A review on photocatalytic seawater splitting with efficient and selective catalysts for hydrogen evolution reaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124008001
    DOI: 10.1016/j.rser.2024.115074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124008001
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dingenen, Fons & Verbruggen, Sammy W., 2021. "Tapping hydrogen fuel from the ocean: A review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    2. Wenming Tong & Mark Forster & Fabio Dionigi & Sören Dresp & Roghayeh Sadeghi Erami & Peter Strasser & Alexander J. Cowan & Pau Farràs, 2020. "Electrolysis of low-grade and saline surface water," Nature Energy, Nature, vol. 5(5), pages 367-377, May.
    3. Gabriela Elena Badea & Cristina Hora & Ioana Maior & Anca Cojocaru & Calin Secui & Sanda Monica Filip & Florin Ciprian Dan, 2022. "Sustainable Hydrogen Production from Seawater Electrolysis: Through Fundamental Electrochemical Principles to the Most Recent Development," Energies, MDPI, vol. 15(22), pages 1-31, November.
    4. Ni, Meng & Leung, Michael K.H. & Leung, Dennis Y.C. & Sumathy, K., 2007. "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 401-425, April.
    5. Jingrun Ran & Guoping Gao & Fa-Tang Li & Tian-Yi Ma & Aijun Du & Shi-Zhang Qiao, 2017. "Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    6. Fu Sun & Jingshan Qin & Zhiyu Wang & Mengzhou Yu & Xianhong Wu & Xiaoming Sun & Jieshan Qiu, 2021. "Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Yang Gao & Yurui Xue & Lu Qi & Chengyu Xing & Xuchen Zheng & Feng He & Yuliang Li, 2022. "Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Tao Liu & Cheng Lan & Min Tang & Mengxin Li & Yitao Xu & Hangrui Yang & Qingyue Deng & Wenchuan Jiang & Zhiyu Zhao & Yifan Wu & Heping Xie, 2024. "Redox-mediated decoupled seawater direct splitting for H2 production," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Libo Wu & Wanheng Lu & Wei Li Ong & Andrew See Weng Wong & Yuanming Zhang & Tianxi Zhang & Kaiyang Zeng & Zhifeng Ren & Ghim Wei Ho, 2025. "Photothermal-promoted anion exchange membrane seawater electrolysis on a nickel-molybdenum-based catalyst," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    5. Yasuda, Masahide & Matsumoto, Tomoko & Yamashita, Toshiaki, 2018. "Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1627-1635.
    6. Pandey, Mayank & Deshmukh, Kalim & Raman, Akhila & Asok, Aparna & Appukuttan, Saritha & Suman, G.R., 2024. "Prospects of MXene and graphene for energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Sivasakthi, Sethuraman & Gurunathan, Karuppasamy, 2020. "Graphitic carbon nitride bedecked with CuO/ZnO hetero-interface microflower towards high photocatalytic performance," Renewable Energy, Elsevier, vol. 159(C), pages 786-800.
    8. Huang, Yuming & Zhou, Wei & Xie, Liang & Li, Jiayi & He, Yong & Chen, Shuai & Meng, Xiaoxiao & Gao, Jihui & Qin, Yukun, 2022. "Edge and defect sites in porous activated coke enable highly efficient carbon-assisted water electrolysis for energy-saving hydrogen production," Renewable Energy, Elsevier, vol. 195(C), pages 283-292.
    9. Yan, Jianhui & Yang, Haihua & Tang, Yougen & Lu, Zhouguang & Zheng, Shuqin & Yao, Maohai & Han, Yong, 2009. "Synthesis and photocatalytic activity of CuYyFe2−yO4–CuCo2O4 nanocomposites for H2 evolution under visible light irradiation," Renewable Energy, Elsevier, vol. 34(11), pages 2399-2403.
    10. Moharana, Manoj Kumar & Peela, Nageswara Rao & Khandekar, Sameer & Kunzru, Deepak, 2011. "Distributed hydrogen production from ethanol in a microfuel processor: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 524-533, January.
    11. Chen, Guanyi & Tao, Junyu & Liu, Caixia & Yan, Beibei & Li, Wanqing & Li, Xiangping, 2017. "Hydrogen production via acetic acid steam reforming: A critical review on catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1091-1098.
    12. Chen, Yu & Gao, Xiang & Liu, Xinwei & Ji, Guipeng & Fu, Li & Yang, Yingze & Yu, Qiqi & Zhang, Wenjing & Xue, Xiaomeng, 2020. "Water collection from air by ionic liquids for efficient visible-light-driven hydrogen evolution by metal-free conjugated polymer photocatalysts," Renewable Energy, Elsevier, vol. 147(P1), pages 594-601.
    13. Yang, Weijuan & Zhang, Tianyou & Liu, Jianzhong & Wang, Zhihua & Zhou, Junhu & Cen, Kefa, 2015. "Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature," Energy, Elsevier, vol. 93(P1), pages 451-457.
    14. Libo Zhu & Jian Huang & Ge Meng & Tiantian Wu & Chang Chen & Han Tian & Yafeng Chen & Fantao Kong & Ziwei Chang & Xiangzhi Cui & Jianlin Shi, 2023. "Active site recovery and N-N bond breakage during hydrazine oxidation boosting the electrochemical hydrogen production," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Kumar, Sanjay & Jain, Ankur & Ichikawa, T. & Kojima, Y. & Dey, G.K., 2017. "Development of vanadium based hydrogen storage material: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 791-800.
    16. Reilly, Kevin & Wilkinson, David P. & Taghipour, Fariborz, 2018. "Photocatalytic water splitting in a fluidized bed system: Computational modeling and experimental studies," Applied Energy, Elsevier, vol. 222(C), pages 423-436.
    17. Ruggero Angelico & Ferruccio Giametta & Biagio Bianchi & Pasquale Catalano, 2025. "Green Hydrogen for Energy Transition: A Critical Perspective," Energies, MDPI, vol. 18(2), pages 1-47, January.
    18. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    19. Sixie Zhang & Yunan Wang & Shuyu Li & Zhongfeng Wang & Haocheng Chen & Li Yi & Xu Chen & Qihao Yang & Wenwen Xu & Aiying Wang & Zhiyi Lu, 2023. "Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Shujie Liu & Zhiguo Zhang & Kamran Dastafkan & Yan Shen & Chuan Zhao & Mingkui Wang, 2025. "Yttrium-doped NiMo-MoO2 heterostructure electrocatalysts for hydrogen production from alkaline seawater," Nature Communications, Nature, vol. 16(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124008001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.