IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32937-2.html
   My bibliography  Save this article

Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water

Author

Listed:
  • Yang Gao

    (Chinese Academy of Sciences)

  • Yurui Xue

    (Chinese Academy of Sciences
    Shandong University)

  • Lu Qi

    (Shandong University)

  • Chengyu Xing

    (Chinese Academy of Sciences)

  • Xuchen Zheng

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Feng He

    (Chinese Academy of Sciences)

  • Yuliang Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

The realization of the efficient hydrogen conversion with large current densities at low overpotentials represents the development trend of this field. Here we report the atomic active sites tailoring through a facile synthetic method to yield well-defined Rhodium nanocrystals in aqueous solution using formic acid as the reducing agent and graphdiyne as the stabilizing support. High-resolution high-angle annular dark-field scanning-transmission electron microscopy images show the high-density atomic steps on the faces of hexahedral Rh nanocrystals. Experimental results reveal the formation of stable sp–C~Rh bonds can stabilize Rh nanocrystals and further improve charge transfer ability in the system. Experimental and density functional theory calculation results solidly demonstrate the exposed high active stepped surfaces and various metal atomic sites affect the electronic structure of the catalyst to reduce the overpotential resulting in the large-current hydrogen production from saline water. This exciting result demonstrates unmatched electrocatalytic performance and highly stable saline water electrolysis.

Suggested Citation

  • Yang Gao & Yurui Xue & Lu Qi & Chengyu Xing & Xuchen Zheng & Feng He & Yuliang Li, 2022. "Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32937-2
    DOI: 10.1038/s41467-022-32937-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32937-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32937-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zengyao Wang & Jiyi Chen & Erhong Song & Ning Wang & Juncai Dong & Xiang Zhang & Pulickel M. Ajayan & Wei Yao & Chenfeng Wang & Jianjun Liu & Jianfeng Shen & Mingxin Ye, 2021. "Manipulation on active electronic states of metastable phase β-NiMoO4 for large current density hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Fang Yu & Haiqing Zhou & Yufeng Huang & Jingying Sun & Fan Qin & Jiming Bao & William A. Goddard & Shuo Chen & Zhifeng Ren, 2018. "High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    3. Yao Zheng & Yan Jiao & Yihan Zhu & Lu Hua Li & Yu Han & Ying Chen & Aijun Du & Mietek Jaroniec & Shi Zhang Qiao, 2014. "Hydrogen evolution by a metal-free electrocatalyst," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    4. Wenming Tong & Mark Forster & Fabio Dionigi & Sören Dresp & Roghayeh Sadeghi Erami & Peter Strasser & Alexander J. Cowan & Pau Farràs, 2020. "Electrolysis of low-grade and saline surface water," Nature Energy, Nature, vol. 5(5), pages 367-377, May.
    5. Xueke Wu & Zuochao Wang & Dan Zhang & Yingnan Qin & Minghui Wang & Yi Han & Tianrong Zhan & Bo Yang & Shaoxiang Li & Jianping Lai & Lei Wang, 2021. "Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Yinlong Zhu & Hassan A. Tahini & Zhiwei Hu & Jie Dai & Yubo Chen & Hainan Sun & Wei Zhou & Meilin Liu & Sean C. Smith & Huanting Wang & Zongping Shao, 2019. "Unusual synergistic effect in layered Ruddlesden−Popper oxide enables ultrafast hydrogen evolution," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    7. Panlong Zhai & Mingyue Xia & Yunzhen Wu & Guanghui Zhang & Junfeng Gao & Bo Zhang & Shuyan Cao & Yanting Zhang & Zhuwei Li & Zhaozhong Fan & Chen Wang & Xiaomeng Zhang & Jeffrey T. Miller & Licheng Su, 2021. "Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. Yuting Luo & Lei Tang & Usman Khan & Qiangmin Yu & Hui-Ming Cheng & Xiaolong Zou & Bilu Liu, 2019. "Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    9. Kai Ling Zhou & Zelin Wang & Chang Bao Han & Xiaoxing Ke & Changhao Wang & Yuhong Jin & Qianqian Zhang & Jingbing Liu & Hao Wang & Hui Yan, 2021. "Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Qiangmin Yu & Zhiyuan Zhang & Siyao Qiu & Yuting Luo & Zhibo Liu & Fengning Yang & Heming Liu & Shiyu Ge & Xiaolong Zou & Baofu Ding & Wencai Ren & Hui-Ming Cheng & Chenghua Sun & Bilu Liu, 2021. "A Ta-TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    11. Luo Yu & Qing Zhu & Shaowei Song & Brian McElhenny & Dezhi Wang & Chunzheng Wu & Zhaojun Qin & Jiming Bao & Ying Yu & Shuo Chen & Zhifeng Ren, 2019. "Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    12. Panlong Zhai & Yanxue Zhang & Yunzhen Wu & Junfeng Gao & Bo Zhang & Shuyan Cao & Yanting Zhang & Zhuwei Li & Licheng Sun & Jungang Hou, 2020. "Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    13. Fu Sun & Jingshan Qin & Zhiyu Wang & Mengzhou Yu & Xianhong Wu & Xiaoming Sun & Jieshan Qiu, 2021. "Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    14. Yurui Xue & Bolong Huang & Yuanping Yi & Yuan Guo & Zicheng Zuo & Yongjun Li & Zhiyu Jia & Huibiao Liu & Yuliang Li, 2018. "Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiachen Li & Yuqiang Ma & Cong Zhang & Chi Zhang & Huijun Ma & Zhaoqi Guo & Ning Liu & Ming Xu & Haixia Ma & Jieshan Qiu, 2023. "Green electrosynthesis of 3,3’-diamino-4,4’-azofurazan energetic materials coupled with energy-efficient hydrogen production over Pt-based catalysts," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamran Dastafkan & Xiangjian Shen & Rosalie K. Hocking & Quentin Meyer & Chuan Zhao, 2023. "Monometallic interphasic synergy via nano-hetero-interfacing for hydrogen evolution in alkaline electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Yudi Zhang & Kathryn E. Arpino & Qun Yang & Naoki Kikugawa & Dmitry A. Sokolov & Clifford W. Hicks & Jian Liu & Claudia Felser & Guowei Li, 2022. "Observation of a robust and active catalyst for hydrogen evolution under high current densities," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Heming Liu & Ruikuan Xie & Yuting Luo & Zhicheng Cui & Qiangmin Yu & Zhiqiang Gao & Zhiyuan Zhang & Fengning Yang & Xin Kang & Shiyu Ge & Shaohai Li & Xuefeng Gao & Guoliang Chai & Le Liu & Bilu Liu, 2022. "Dual interfacial engineering of a Chevrel phase electrode material for stable hydrogen evolution at 2500 mA cm−2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Xin Kang & Fengning Yang & Zhiyuan Zhang & Heming Liu & Shiyu Ge & Shuqi Hu & Shaohai Li & Yuting Luo & Qiangmin Yu & Zhibo Liu & Qiang Wang & Wencai Ren & Chenghua Sun & Hui-Ming Cheng & Bilu Liu, 2023. "A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Luqi Wang & Yixin Hao & Liming Deng & Feng Hu & Sheng Zhao & Linlin Li & Shengjie Peng, 2022. "Rapid complete reconfiguration induced actual active species for industrial hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Yong Zuo & Sebastiano Bellani & Michele Ferri & Gabriele Saleh & Dipak V. Shinde & Marilena Isabella Zappia & Rosaria Brescia & Mirko Prato & Luca Trizio & Ivan Infante & Francesco Bonaccorso & Libera, 2023. "High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Sixie Zhang & Yunan Wang & Shuyu Li & Zhongfeng Wang & Haocheng Chen & Li Yi & Xu Chen & Qihao Yang & Wenwen Xu & Aiying Wang & Zhiyi Lu, 2023. "Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Veeramani, Krishnan & Janani, Gnanaprakasam & Kim, Joonyoung & Surendran, Subramani & Lim, Jaehyoung & Jesudass, Sebastian Cyril & Mahadik, Shivraj & lee, Hyunjung & Kim, Tae-Hoon & Kim, Jung Kyu & Si, 2023. "Hydrogen and value-added products yield from hybrid water electrolysis: A critical review on recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    10. Yiming Zhu & Malte Klingenhof & Chenlong Gao & Toshinari Koketsu & Gregor Weiser & Yecan Pi & Shangheng Liu & Lijun Sui & Jingrong Hou & Jiayi Li & Haomin Jiang & Limin Xu & Wei-Hsiang Huang & Chih-We, 2024. "Facilitating alkaline hydrogen evolution reaction on the hetero-interfaced Ru/RuO2 through Pt single atoms doping," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Chenyu Li & Zhijie Wang & Mingda Liu & Enze Wang & Bolun Wang & Longlong Xu & Kaili Jiang & Shoushan Fan & Yinghui Sun & Jia Li & Kai Liu, 2022. "Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Tianyu Zhang & Jing Jin & Junmei Chen & Yingyan Fang & Xu Han & Jiayi Chen & Yaping Li & Yu Wang & Junfeng Liu & Lei Wang, 2022. "Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Liu, Zhao & Han, Beibei & Lu, Zhiyi & Guan, Wanbing & Li, Yuanyuan & Song, Changjiang & Chen, Liang & Singhal, Subhash C., 2021. "Efficiency and stability of hydrogen production from seawater using solid oxide electrolysis cells," Applied Energy, Elsevier, vol. 300(C).
    14. Ling Zhou & Daying Guo & Lianhui Wu & Zhixi Guan & Chao Zou & Huile Jin & Guoyong Fang & Xi’an Chen & Shun Wang, 2024. "A restricted dynamic surface self-reconstruction toward high-performance of direct seawater oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Xinzhe Tian & Yinggang Guo & Wankai An & Yun-Lai Ren & Yuchen Qin & Caoyuan Niu & Xin Zheng, 2022. "Coupling photocatalytic water oxidation with reductive transformations of organic molecules," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Wan Jae Dong & Yixin Xiao & Ke R. Yang & Zhengwei Ye & Peng Zhou & Ishtiaque Ahmed Navid & Victor S. Batista & Zetian Mi, 2023. "Pt nanoclusters on GaN nanowires for solar-asssisted seawater hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Andreas von Döllen & YoungSeok Hwang & Stephan Schlüter, 2021. "The Future Is Colorful—An Analysis of the CO 2 Bow Wave and Why Green Hydrogen Cannot Do It Alone," Energies, MDPI, vol. 14(18), pages 1-20, September.
    18. Panlong Zhai & Chen Wang & Yuanyuan Zhao & Yanxue Zhang & Junfeng Gao & Licheng Sun & Jungang Hou, 2023. "Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Tomohiro Tsuda & Min Sheng & Hiroya Ishikawa & Seiji Yamazoe & Jun Yamasaki & Motoaki Hirayama & Sho Yamaguchi & Tomoo Mizugaki & Takato Mitsudome, 2023. "Iron phosphide nanocrystals as an air-stable heterogeneous catalyst for liquid-phase nitrile hydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Lei, Yuanting & Zhang, Lili & Zhou, Danni & Xiong, Chengli & Zhao, Yafei & Chen, Wenxing & Xiang, Xu & Shang, Huishan & Zhang, Bing, 2022. "Construction of interconnected NiO/CoFe alloy nanosheets for overall water splitting," Renewable Energy, Elsevier, vol. 194(C), pages 459-468.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32937-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.