IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4783.html
   My bibliography  Save this article

Hydrogen evolution by a metal-free electrocatalyst

Author

Listed:
  • Yao Zheng

    (School of Chemical Engineering, University of Adelaide
    Australian Institute for Bioengineering and Nanotechnology, University of Queensland)

  • Yan Jiao

    (School of Chemical Engineering, University of Adelaide)

  • Yihan Zhu

    (King Abdullah University of Science and Technology)

  • Lu Hua Li

    (Institute for Frontier Materials, Deakin University)

  • Yu Han

    (King Abdullah University of Science and Technology)

  • Ying Chen

    (Institute for Frontier Materials, Deakin University)

  • Aijun Du

    (School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology)

  • Mietek Jaroniec

    (Kent State University)

  • Shi Zhang Qiao

    (School of Chemical Engineering, University of Adelaide)

Abstract

Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All alternatives to platinum thus far are based on nonprecious metals, and, to our knowledge, there is no report about a catalyst for electrocatalytic hydrogen evolution beyond metals. Here we couple graphitic-carbon nitride with nitrogen-doped graphene to produce a metal-free hybrid catalyst, which shows an unexpected hydrogen evolution reaction activity with comparable overpotential and Tafel slope to some of well-developed metallic catalysts. Experimental observations in combination with density functional theory calculations reveal that its unusual electrocatalytic properties originate from an intrinsic chemical and electronic coupling that synergistically promotes the proton adsorption and reduction kinetics.

Suggested Citation

  • Yao Zheng & Yan Jiao & Yihan Zhu & Lu Hua Li & Yu Han & Ying Chen & Aijun Du & Mietek Jaroniec & Shi Zhang Qiao, 2014. "Hydrogen evolution by a metal-free electrocatalyst," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4783
    DOI: 10.1038/ncomms4783
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4783
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Zhenlu & Wu, Haoxi & Li, Chuanping, 2021. "Engineering iron phosphide-on-plasmonic Ag/Au-nanoshells as an efficient cathode catalyst in water splitting for hydrogen production," Energy, Elsevier, vol. 218(C).
    2. Munonde, Tshimangadzo S. & Zheng, Haitao & Matseke, Mphoma S. & Nomngongo, Philiswa N. & Wang, Yi & Tsiakaras, Panagiotis, 2020. "A green approach for enhancing the electrocatalytic activity and stability of NiFe2O4/CB nanospheres towards hydrogen production," Renewable Energy, Elsevier, vol. 154(C), pages 704-714.
    3. Yang Gao & Yurui Xue & Lu Qi & Chengyu Xing & Xuchen Zheng & Feng He & Yuliang Li, 2022. "Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Qahtan, Talal F. & Alade, Ibrahim O. & Rahaman, Md Safiqur & Saleh, Tawfik A., 2023. "Mapping the research landscape of hydrogen production through electrocatalysis: A decade of progress and key trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Wei Wang & Qun Song & Qiang Luo & Linqian Li & Xiaobing Huo & Shipeng Chen & Jinyang Li & Yunhong Li & Se Shi & Yihui Yuan & Xiwen Du & Kai Zhang & Ning Wang, 2023. "Photothermal-enabled single-atom catalysts for high-efficiency hydrogen peroxide photosynthesis from natural seawater," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Shaik Gouse Peera & Ravindranadh Koutavarapu & Chao Liu & Gaddam Rajeshkhanna & Arunchander Asokan & Ch. Venkata Reddy, 2021. "Cobalt Nanoparticle-Embedded Nitrogen-Doped Carbon Catalyst Derived from a Solid-State Metal-Organic Framework Complex for OER and HER Electrocatalysis," Energies, MDPI, vol. 14(5), pages 1-14, March.
    7. Fanpeng Cheng & Xianyun Peng & Lingzi Hu & Bin Yang & Zhongjian Li & Chung-Li Dong & Jeng-Lung Chen & Liang-Ching Hsu & Lecheng Lei & Qiang Zheng & Ming Qiu & Liming Dai & Yang Hou, 2022. "Accelerated water activation and stabilized metal-organic framework via constructing triangular active-regions for ampere-level current density hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.