IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v184y2023ics1364032123003477.html
   My bibliography  Save this article

Mapping the research landscape of hydrogen production through electrocatalysis: A decade of progress and key trends

Author

Listed:
  • Qahtan, Talal F.
  • Alade, Ibrahim O.
  • Rahaman, Md Safiqur
  • Saleh, Tawfik A.

Abstract

As the demand for renewable energy continues to rise, the significance of electrocatalysis research for hydrogen production has also increased. To explore the developmental trends in this field, a scientometric-assisted review was conducted using clustering analysis of keywords from 43,564 papers published between 2013 and 2022. The results of the study demonstrate a globally diverse research landscape, with contributions from Asia, Europe, North America, and the Middle East. China emerges as the most prolific contributor, with consistent growth in research productivity over the past decade. The USA, South Korea, India, and Germany were among the top five leading countries in electrocatalysis research. Singapore, USA, Australia, Saudi Arabia, and Germany lead research impact, measured by total citations per total paper. China has the highest collaboration in electrocatalysis research, with collaborations with the USA, Australia, Singapore, Saudi Arabia, Japan, the UK, Germany, Canada, Korea, and India. Importantly, the study reveals six clusters of electrocatalysis research, with different author keywords, each covering a range of topics and materials. The implications of each of the six clusters in electrocatalysis are examined critically. This study offers valuable insights for researchers, policymakers, and funding organizations in making critical decisions by identifying the main themes and trends in hydrogen evolution through electrocatalysis research.

Suggested Citation

  • Qahtan, Talal F. & Alade, Ibrahim O. & Rahaman, Md Safiqur & Saleh, Tawfik A., 2023. "Mapping the research landscape of hydrogen production through electrocatalysis: A decade of progress and key trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:rensus:v:184:y:2023:i:c:s1364032123003477
    DOI: 10.1016/j.rser.2023.113490
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123003477
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113490?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donthu, Naveen & Kumar, Satish & Mukherjee, Debmalya & Pandey, Nitesh & Lim, Weng Marc, 2021. "How to conduct a bibliometric analysis: An overview and guidelines," Journal of Business Research, Elsevier, vol. 133(C), pages 285-296.
    2. Yao Zheng & Yan Jiao & Yihan Zhu & Lu Hua Li & Yu Han & Ying Chen & Aijun Du & Mietek Jaroniec & Shi Zhang Qiao, 2014. "Hydrogen evolution by a metal-free electrocatalyst," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    3. Mubashir Qasim, 2017. "Sustainability And Wellbeing: A Scientometric And Bibliometric Review Of The Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 31(4), pages 1035-1061, September.
    4. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    5. Lynn H. Kaack & Priya L. Donti & Emma Strubell & George Kamiya & Felix Creutzig & David Rolnick, 2022. "Aligning artificial intelligence with climate change mitigation," Nature Climate Change, Nature, vol. 12(6), pages 518-527, June.
    6. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    7. Munan Li, 2018. "Classifying and ranking topic terms based on a novel approach: role differentiation of author keywords," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 77-100, July.
    8. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    9. Hongfei Wang & Zhipeng Yu & Jie Zhou & Chengming Li & Ananthanarasimhan Jayanarasimhan & Xiqiang Zhao & Hao Zhang, 2023. "A Scientometric Review of CO 2 Electroreduction Research from 2005 to 2022," Energies, MDPI, vol. 16(2), pages 1-21, January.
    10. Azima, Mahshad & Seyis, Senem, 2023. "Science mapping the knowledge domain of energy performance research in the AEC industry: A scientometric analysis," Energy, Elsevier, vol. 264(C).
    11. Manuel Esperon-Rodriguez & Mark G. Tjoelker & Jonathan Lenoir & John B. Baumgartner & Linda J. Beaumont & David A. Nipperess & Sally A. Power & Benoît Richard & Paul D. Rymer & Rachael V. Gallagher, 2022. "Climate change increases global risk to urban forests," Nature Climate Change, Nature, vol. 12(10), pages 950-955, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
    2. Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "Optimal Sizing and Scheduling of Hybrid Energy Systems: The Cases of Morona Santiago and the Galapagos Islands," Energies, MDPI, vol. 13(15), pages 1-20, August.
    3. Vladimir Litvinenko, 2020. "The Role of Hydrocarbons in the Global Energy Agenda: The Focus on Liquefied Natural Gas," Resources, MDPI, vol. 9(5), pages 1-22, May.
    4. Panetta, Ida Claudia & Leo, Sabrina & Delle Foglie, Andrea, 2023. "The development of digital payments – Past, present, and future – From the literature," Research in International Business and Finance, Elsevier, vol. 64(C).
    5. Tong, Xin & Liu, Su & Yan, Junchen & Broesicke, Osvaldo A. & Chen, Yongsheng & Crittenden, John, 2020. "Thermolytic osmotic heat engine for low-grade heat harvesting: Thermodynamic investigation and potential application exploration," Applied Energy, Elsevier, vol. 259(C).
    6. Tufa, Ramato Ashu & Pawlowski, Sylwin & Veerman, Joost & Bouzek, Karel & Fontananova, Enrica & di Profio, Gianluca & Velizarov, Svetlozar & Goulão Crespo, João & Nijmeijer, Kitty & Curcio, Efrem, 2018. "Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage," Applied Energy, Elsevier, vol. 225(C), pages 290-331.
    7. Wang, Qiliang & Hu, Mingke & Yang, Honglun & Cao, Jingyu & Li, Jing & Su, Yuehong & Pei, Gang, 2019. "Energetic and exergetic analyses on structural optimized parabolic trough solar receivers in a concentrated solar–thermal collector system," Energy, Elsevier, vol. 171(C), pages 611-623.
    8. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    9. Jan Wiers & Didier Chabaud, 2022. "Bibliometric analysis of immigrant entrepreneurship research 2009–2019," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 12(1), pages 441-464, December.
    10. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    11. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
    12. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    13. Wenran Gao & Hui Li & Karnowo & Bing Song & Shu Zhang, 2020. "Integrated Leaching and Thermochemical Technologies for Producing High-Value Products from Rice Husk: Leaching of Rice Husk with the Aqueous Phases of Bioliquids," Energies, MDPI, vol. 13(22), pages 1-15, November.
    14. Muhammad Habib Ur Rehman & Luigi Coppola & Ernestino Lufrano & Isabella Nicotera & Cataldo Simari, 2023. "Enhancing Water Retention, Transport, and Conductivity Performance in Fuel Cell Applications: Nafion-Based Nanocomposite Membranes with Organomodified Graphene Oxide Nanoplatelets," Energies, MDPI, vol. 16(23), pages 1-11, November.
    15. Tajana Čop & Mario Njavro, 2022. "Application of Discrete Choice Experiment in Agricultural Risk Management: A Review," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    16. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    17. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    18. Sung-Fu Hung & Aoni Xu & Xue Wang & Fengwang Li & Shao-Hui Hsu & Yuhang Li & Joshua Wicks & Eduardo González Cervantes & Armin Sedighian Rasouli & Yuguang C. Li & Mingchuan Luo & Dae-Hyun Nam & Ning W, 2022. "A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    20. Shuangqing Sheng & Wei Song & Hua Lian & Lei Ning, 2022. "Review of Urban Land Management Based on Bibliometrics," Land, MDPI, vol. 11(11), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:184:y:2023:i:c:s1364032123003477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.