IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38211-3.html
   My bibliography  Save this article

Photothermal-enabled single-atom catalysts for high-efficiency hydrogen peroxide photosynthesis from natural seawater

Author

Listed:
  • Wei Wang

    (Hainan University
    Tianjin University)

  • Qun Song

    (University of Göttingen)

  • Qiang Luo

    (Hainan University)

  • Linqian Li

    (Hainan University)

  • Xiaobing Huo

    (Hainan University)

  • Shipeng Chen

    (Hainan University)

  • Jinyang Li

    (Hainan University)

  • Yunhong Li

    (Hainan University)

  • Se Shi

    (Hainan University)

  • Yihui Yuan

    (Hainan University)

  • Xiwen Du

    (Tianjin University)

  • Kai Zhang

    (University of Göttingen)

  • Ning Wang

    (Hainan University)

Abstract

Hydrogen peroxide (H2O2) is a powerful industrial oxidant and potential carbon-neutral liquid energy carrier. Sunlight-driven synthesis of H2O2 from the most earth-abundant O2 and seawater is highly desirable. However, the solar-to-chemical efficiency of H2O2 synthesis in particulate photocatalysis systems is low. Here, we present a cooperative sunlight-driven photothermal-photocatalytic system based on cobalt single-atom supported on sulfur doped graphitic carbon nitride/reduced graphene oxide heterostructure (Co–CN@G) to boost H2O2 photosynthesis from natural seawater. By virtue of the photothermal effect and synergy between Co single atoms and the heterostructure, Co–CN@G enables a solar-to-chemical efficiency of more than 0.7% under simulated sunlight irradiation. Theoretical calculations verify that the single atoms combined with heterostructure significantly promote the charge separation, facilitate O2 absorption and reduce the energy barriers for O2 reduction and water oxidation, eventually boosting H2O2 photoproduction. The single-atom photothermal-photocatalytic materials may provide possibility of large-scale H2O2 production from inexhaustible seawater in a sustainable way.

Suggested Citation

  • Wei Wang & Qun Song & Qiang Luo & Linqian Li & Xiaobing Huo & Shipeng Chen & Jinyang Li & Yunhong Li & Se Shi & Yihui Yuan & Xiwen Du & Kai Zhang & Ning Wang, 2023. "Photothermal-enabled single-atom catalysts for high-efficiency hydrogen peroxide photosynthesis from natural seawater," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38211-3
    DOI: 10.1038/s41467-023-38211-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38211-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38211-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kang Jiang & Boyang Liu & Min Luo & Shoucong Ning & Ming Peng & Yang Zhao & Ying-Rui Lu & Ting-Shan Chan & Frank M. F. Groot & Yongwen Tan, 2019. "Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Yao Zheng & Yan Jiao & Yihan Zhu & Lu Hua Li & Yu Han & Ying Chen & Aijun Du & Mietek Jaroniec & Shi Zhang Qiao, 2014. "Hydrogen evolution by a metal-free electrocatalyst," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    3. Peng Wang & Yingying Ren & Rutao Wang & Peng Zhang & Mingjie Ding & Caixia Li & Danyang Zhao & Zhao Qian & Zhiwei Zhang & Luyuan Zhang & Longwei Yin, 2020. "Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Xinjian Shi & Samira Siahrostami & Guo-Ling Li & Yirui Zhang & Pongkarn Chakthranont & Felix Studt & Thomas F. Jaramillo & Xiaolin Zheng & Jens K. Nørskov, 2017. "Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    5. Shaohui Guo & Xuanhua Li & Ju Li & Bingqing Wei, 2021. "Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Qingyao Wu & Jingjing Cao & Xiao Wang & Yan Liu & Yajie Zhao & Hui Wang & Yang Liu & Hui Huang & Fan Liao & Mingwang Shao & Zhenghui Kang, 2021. "Author Correction: A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater," Nature Communications, Nature, vol. 12(1), pages 1-2, December.
    7. Kentaro Mase & Masaki Yoneda & Yusuke Yamada & Shunichi Fukuzumi, 2016. "Seawater usable for production and consumption of hydrogen peroxide as a solar fuel," Nature Communications, Nature, vol. 7(1), pages 1-7, September.
    8. Qingyao Wu & Jingjing Cao & Xiao Wang & Yan Liu & Yajie Zhao & Hui Wang & Yang Liu & Hui Huang & Fan Liao & Mingwang Shao & Zhenghui Kang, 2021. "A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chengxin Zhou & Jian Gao & Yunlong Deng & Ming Wang & Dan Li & Chuan Xia, 2023. "Electric double layer-mediated polarization field for optimizing photogenerated carrier dynamics and thermodynamics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Hong-chao Li & Qiang Wan & Congcong Du & Jiafei Zhao & Fumin Li & Ying Zhang & Yanping Zheng & Mingshu Chen & Kelvin H. L. Zhang & Jianyu Huang & Gang Fu & Sen Lin & Xiaoqing Huang & Haifeng Xiong, 2022. "Layered Pd oxide on PdSn nanowires for boosting direct H2O2 synthesis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Fuyang Liu & Peng Zhou & Yanghui Hou & Hao Tan & Yin Liang & Jialiang Liang & Qing Zhang & Shaojun Guo & Meiping Tong & Jinren Ni, 2023. "Covalent organic frameworks for direct photosynthesis of hydrogen peroxide from water, air and sunlight," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Tian Liu & Zhenhua Pan & Junie Jhon M. Vequizo & Kosaku Kato & Binbin Wu & Akira Yamakata & Kenji Katayama & Baoliang Chen & Chiheng Chu & Kazunari Domen, 2022. "Overall photosynthesis of H2O2 by an inorganic semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Xu Zhang & Hui Su & Peixin Cui & Yongyong Cao & Zhenyuan Teng & Qitao Zhang & Yang Wang & Yibo Feng & Ran Feng & Jixiang Hou & Xiyuan Zhou & Peijie Ma & Hanwen Hu & Kaiwen Wang & Cong Wang & Liyong Ga, 2023. "Developing Ni single-atom sites in carbon nitride for efficient photocatalytic H2O2 production," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Lejing Li & Zhuofeng Hu & Yongqiang Kang & Shiyu Cao & Liangpang Xu & Luo Yu & Lizhi Zhang & Jimmy C. Yu, 2023. "Electrochemical generation of hydrogen peroxide from a zinc gallium oxide anode with dual active sites," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Ruiling Zhang & Yaozhou Li & Xuan Zhou & Ao Yu & Qi Huang & Tingting Xu & Longtao Zhu & Ping Peng & Shuyan Song & Luis Echegoyen & Fang-Fang Li, 2023. "Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Che Lah, Nurul Akmal, 2021. "Late transition metal nanocomplexes: Applications for renewable energy conversion and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Jie Yin & Jing Jin & Zhouyang Yin & Liu Zhu & Xin Du & Yong Peng & Pinxian Xi & Chun-Hua Yan & Shouheng Sun, 2023. "The built-in electric field across FeN/Fe3N interface for efficient electrochemical reduction of CO2 to CO," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Guokang Han & Xue Zhang & Wei Liu & Qinghua Zhang & Zhiqiang Wang & Jun Cheng & Tao Yao & Lin Gu & Chunyu Du & Yunzhi Gao & Geping Yin, 2021. "Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    11. Zhao, Zhenlu & Wu, Haoxi & Li, Chuanping, 2021. "Engineering iron phosphide-on-plasmonic Ag/Au-nanoshells as an efficient cathode catalyst in water splitting for hydrogen production," Energy, Elsevier, vol. 218(C).
    12. Xiaowei Shi & Chao Dai & Xin Wang & Jiayue Hu & Junying Zhang & Lingxia Zheng & Liang Mao & Huajun Zheng & Mingshan Zhu, 2022. "Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Rashmi Mehrotra & Dongrak Oh & Ji-Wook Jang, 2021. "Unassisted selective solar hydrogen peroxide production by an oxidised buckypaper-integrated perovskite photocathode," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    14. Yang Gao & Yurui Xue & Lu Qi & Chengyu Xing & Xuchen Zheng & Feng He & Yuliang Li, 2022. "Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Kenichi Endo & Masaki Saruyama & Toshiharu Teranishi, 2023. "Location-selective immobilisation of single-atom catalysts on the surface or within the interior of ionic nanocrystals using coordination chemistry," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Chaoran Dong & Yilong Yang & Xuemin Hu & Yoonjun Cho & Gyuyong Jang & Yanhui Ao & Luyang Wang & Jinyou Shen & Jong Hyeok Park & Kan Zhang, 2022. "Self-cycled photo-Fenton-like system based on an artificial leaf with a solar-to-H2O2 conversion efficiency of 1.46%," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Shaik Gouse Peera & Ravindranadh Koutavarapu & Chao Liu & Gaddam Rajeshkhanna & Arunchander Asokan & Ch. Venkata Reddy, 2021. "Cobalt Nanoparticle-Embedded Nitrogen-Doped Carbon Catalyst Derived from a Solid-State Metal-Organic Framework Complex for OER and HER Electrocatalysis," Energies, MDPI, vol. 14(5), pages 1-14, March.
    18. Zhujun Zhang & Takashi Tsuchimochi & Toshiaki Ina & Yoshitaka Kumabe & Shunsuke Muto & Koji Ohara & Hiroki Yamada & Seiichiro L. Ten-no & Takashi Tachikawa, 2022. "Binary dopant segregation enables hematite-based heterostructures for highly efficient solar H2O2 synthesis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Changmin Kim & Sung O Park & Sang Kyu Kwak & Zhenhai Xia & Guntae Kim & Liming Dai, 2023. "Concurrent oxygen reduction and water oxidation at high ionic strength for scalable electrosynthesis of hydrogen peroxide," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Shengdong Wang & Zhipeng Xie & Da Zhu & Shuai Fu & Yishi Wu & Hongling Yu & Chuangye Lu & Panke Zhou & Mischa Bonn & Hai I. Wang & Qing Liao & Hong Xu & Xiong Chen & Cheng Gu, 2023. "Efficient photocatalytic production of hydrogen peroxide using dispersible and photoactive porous polymers," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38211-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.