IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58320-5.html
   My bibliography  Save this article

Photothermal-promoted anion exchange membrane seawater electrolysis on a nickel-molybdenum-based catalyst

Author

Listed:
  • Libo Wu

    (National University of Singapore
    National University of Singapore)

  • Wanheng Lu

    (National University of Singapore)

  • Wei Li Ong

    (National University of Singapore)

  • Andrew See Weng Wong

    (Nanyang Technological University)

  • Yuanming Zhang

    (National University of Singapore)

  • Tianxi Zhang

    (National University of Singapore)

  • Kaiyang Zeng

    (National University of Singapore)

  • Zhifeng Ren

    (University of Houston)

  • Ghim Wei Ho

    (National University of Singapore
    National University of Singapore
    National University of Singapore)

Abstract

Exploring active, durable catalysts and utilizing external renewable energy sources offer notable opportunities for advancing seawater electrolysis. Here, a multifunctional NiMo-based catalyst (NiMo-H2) composed of bimetallic Ni0.91Mo0.09 nanoparticles on MoO2 nanorods is demonstrated for the alkaline seawater hydrogen evolution reaction. The alloying effect and the nanorod-nanoparticle structure endow this catalyst with high structural stability, rapid electron transfer, and a large surface area. The in situ-generated alloyed nanoparticles have notable light absorption and photothermal conversion capabilities, while the vertically grown nanorods suppress diffuse reflection, enabling efficient localized photoheating. Consequently, light irradiation boosts the catalyst’s activity and it works stably at a current density of 500 mA cm−2 in alkaline seawater. We then assemble the NiMo-H2||NiFe LDH pair in a photothermal anion exchange membrane electrolyzer, and it requires approximately 1.6 V to drive a current of 0.45 A, demonstrating robust durability in overall alkaline seawater electrolysis. This photothermal-promoted seawater electrolysis system shows notable potential for hydrogen production from seawater.

Suggested Citation

  • Libo Wu & Wanheng Lu & Wei Li Ong & Andrew See Weng Wong & Yuanming Zhang & Tianxi Zhang & Kaiyang Zeng & Zhifeng Ren & Ghim Wei Ho, 2025. "Photothermal-promoted anion exchange membrane seawater electrolysis on a nickel-molybdenum-based catalyst," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58320-5
    DOI: 10.1038/s41467-025-58320-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58320-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58320-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu Duan & Zi-You Yu & Li Yang & Li-Rong Zheng & Chu-Tian Zhang & Xiao-Tu Yang & Fei-Yue Gao & Xiao-Long Zhang & Xingxing Yu & Ren Liu & Hong-He Ding & Chao Gu & Xu-Sheng Zheng & Lei Shi & Jun Jiang & , 2020. "Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Wei Wang & Qun Song & Qiang Luo & Linqian Li & Xiaobing Huo & Shipeng Chen & Jinyang Li & Yunhong Li & Se Shi & Yihui Yuan & Xiwen Du & Kai Zhang & Ning Wang, 2023. "Photothermal-enabled single-atom catalysts for high-efficiency hydrogen peroxide photosynthesis from natural seawater," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Ming Gong & Wu Zhou & Mon-Che Tsai & Jigang Zhou & Mingyun Guan & Meng-Chang Lin & Bo Zhang & Yongfeng Hu & Di-Yan Wang & Jiang Yang & Stephen J. Pennycook & Bing-Joe Hwang & Hongjie Dai, 2014. "Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
    4. Wenming Tong & Mark Forster & Fabio Dionigi & Sören Dresp & Roghayeh Sadeghi Erami & Peter Strasser & Alexander J. Cowan & Pau Farràs, 2020. "Electrolysis of low-grade and saline surface water," Nature Energy, Nature, vol. 5(5), pages 367-377, May.
    5. Jian Zhang & Tao Wang & Pan Liu & Zhongquan Liao & Shaohua Liu & Xiaodong Zhuang & Mingwei Chen & Ehrenfried Zschech & Xinliang Feng, 2017. "Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    6. Jian Jiang & Fanfei Sun & Si Zhou & Wei Hu & Hao Zhang & Jinchao Dong & Zheng Jiang & Jijun Zhao & Jianfeng Li & Wensheng Yan & Mei Wang, 2018. "Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    7. Yishang Wu & Xiaojing Liu & Dongdong Han & Xianyin Song & Lei Shi & Yao Song & Shuwen Niu & Yufang Xie & Jinyan Cai & Shaoyang Wu & Jian Kang & Jianbin Zhou & Zhiyan Chen & Xusheng Zheng & Xiangheng X, 2018. "Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    8. Qi Lu & Gregory S. Hutchings & Weiting Yu & Yang Zhou & Robert V. Forest & Runzhe Tao & Jonathan Rosen & Bryan T. Yonemoto & Zeyuan Cao & Haimei Zheng & John Q. Xiao & Feng Jiao & Jingguang G. Chen, 2015. "Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    9. Luo Yu & Qing Zhu & Shaowei Song & Brian McElhenny & Dezhi Wang & Chunzheng Wu & Zhaojun Qin & Jiming Bao & Ying Yu & Shuo Chen & Zhifeng Ren, 2019. "Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    10. Panlong Zhai & Chen Wang & Yuanyuan Zhao & Yanxue Zhang & Junfeng Gao & Licheng Sun & Jungang Hou, 2023. "Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Panlong Zhai & Yanxue Zhang & Yunzhen Wu & Junfeng Gao & Bo Zhang & Shuyan Cao & Yanting Zhang & Zhuwei Li & Licheng Sun & Jungang Hou, 2020. "Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    12. Heping Xie & Zhiyu Zhao & Tao Liu & Yifan Wu & Cheng Lan & Wenchuan Jiang & Liangyu Zhu & Yunpeng Wang & Dongsheng Yang & Zongping Shao, 2022. "A membrane-based seawater electrolyser for hydrogen generation," Nature, Nature, vol. 612(7941), pages 673-678, December.
    13. Fu Sun & Jingshan Qin & Zhiyu Wang & Mengzhou Yu & Xianhong Wu & Xiaoming Sun & Jieshan Qiu, 2021. "Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    14. Haoyi Li & Shuangming Chen & Ying Zhang & Qinghua Zhang & Xiaofan Jia & Qi Zhang & Lin Gu & Xiaoming Sun & Li Song & Xun Wang, 2018. "Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Yang Gao & Yurui Xue & Lu Qi & Chengyu Xing & Xuchen Zheng & Feng He & Yuliang Li, 2022. "Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Tao Liu & Cheng Lan & Min Tang & Mengxin Li & Yitao Xu & Hangrui Yang & Qingyue Deng & Wenchuan Jiang & Zhiyu Zhao & Yifan Wu & Heping Xie, 2024. "Redox-mediated decoupled seawater direct splitting for H2 production," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Sixie Zhang & Yunan Wang & Shuyu Li & Zhongfeng Wang & Haocheng Chen & Li Yi & Xu Chen & Qihao Yang & Wenwen Xu & Aiying Wang & Zhiyi Lu, 2023. "Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Shujie Liu & Zhiguo Zhang & Kamran Dastafkan & Yan Shen & Chuan Zhao & Mingkui Wang, 2025. "Yttrium-doped NiMo-MoO2 heterostructure electrocatalysts for hydrogen production from alkaline seawater," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    6. Xin Kang & Fengning Yang & Zhiyuan Zhang & Heming Liu & Shiyu Ge & Shuqi Hu & Shaohai Li & Yuting Luo & Qiangmin Yu & Zhibo Liu & Qiang Wang & Wencai Ren & Chenghua Sun & Hui-Ming Cheng & Bilu Liu, 2023. "A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Xiaogang Sun & Wei Shen & Hao Liu & Pinxian Xi & Mietek Jaroniec & Yao Zheng & Shi-Zhang Qiao, 2024. "Corrosion-resistant NiFe anode towards kilowatt-scale alkaline seawater electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Ling Zhou & Daying Guo & Lianhui Wu & Zhixi Guan & Chao Zou & Huile Jin & Guoyong Fang & Xi’an Chen & Shun Wang, 2024. "A restricted dynamic surface self-reconstruction toward high-performance of direct seawater oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Ramakrishnan, Shanmugam & Delpisheh, Mostafa & Convery, Caillean & Niblett, Daniel & Vinothkannan, Mohanraj & Mamlouk, Mohamed, 2024. "Offshore green hydrogen production from wind energy: Critical review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    10. Tao Liu & Zhiyu Zhao & Wenbin Tang & Yi Chen & Cheng Lan & Liangyu Zhu & Wenchuan Jiang & Yifan Wu & Yunpeng Wang & Zezhou Yang & Dongsheng Yang & Qijun Wang & Lunbo Luo & Taisheng Liu & Heping Xie, 2024. "In-situ direct seawater electrolysis using floating platform in ocean with uncontrollable wave motion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Libo Zhu & Jian Huang & Ge Meng & Tiantian Wu & Chang Chen & Han Tian & Yafeng Chen & Fantao Kong & Ziwei Chang & Xiangzhi Cui & Jianlin Shi, 2023. "Active site recovery and N-N bond breakage during hydrazine oxidation boosting the electrochemical hydrogen production," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Mengjun Xiao & Qianbao Wu & Ruiqi Ku & Liujiang Zhou & Chang Long & Junwu Liang & Andraž Mavrič & Lei Li & Jing Zhu & Matjaz Valant & Jiong Li & Zhenhua Zeng & Chunhua Cui, 2023. "Self-adaptive amorphous CoOxCly electrocatalyst for sustainable chlorine evolution in acidic brine," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Yang Hu & Yao Zheng & Jing Jin & Yantao Wang & Yong Peng & Jie Yin & Wei Shen & Yichao Hou & Liu Zhu & Li An & Min Lu & Pinxian Xi & Chun-Hua Yan, 2023. "Understanding the sulphur-oxygen exchange process of metal sulphides prior to oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Zhan Zhao & Jianpeng Sun & Xiang Li & Shiyu Qin & Chunhu Li & Zisheng Zhang & Zizhen Li & Xiangchao Meng, 2024. "Engineering active and robust alloy-based electrocatalyst by rapid Joule-heating toward ampere-level hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Veeramani, Krishnan & Janani, Gnanaprakasam & Kim, Joonyoung & Surendran, Subramani & Lim, Jaehyoung & Jesudass, Sebastian Cyril & Mahadik, Shivraj & lee, Hyunjung & Kim, Tae-Hoon & Kim, Jung Kyu & Si, 2023. "Hydrogen and value-added products yield from hybrid water electrolysis: A critical review on recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    16. Thomas Adisorn & Maike Venjakob & Julia Pössinger & Sibel Raquel Ersoy & Oliver Wagner & Raphael Moser, 2023. "Implications of the Interrelations between the (Waste)Water Sector and Hydrogen Production for Arid Countries Using the Example of Jordan," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    17. Jie Liang & Zhengwei Cai & Zixiao Li & Yongchao Yao & Yongsong Luo & Shengjun Sun & Dongdong Zheng & Qian Liu & Xuping Sun & Bo Tang, 2024. "Efficient bubble/precipitate traffic enables stable seawater reduction electrocatalysis at industrial-level current densities," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Xiao-Long Zhang & Peng-Cheng Yu & Shu-Ping Sun & Lei Shi & Peng-Peng Yang & Zhi-Zheng Wu & Li-Ping Chi & Ya-Rong Zheng & Min-Rui Gao, 2024. "In situ ammonium formation mediates efficient hydrogen production from natural seawater splitting," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Gupta, Aayush & Likozar, Blaz & Jaidka, Sachin, 2025. "A review on photocatalytic seawater splitting with efficient and selective catalysts for hydrogen evolution reaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    20. Gabriela Scheibel Cassol & Chii Shang & Alicia Kyoungjin An & Noman Khalid Khanzada & Francesco Ciucci & Alessandro Manzotti & Paul Westerhoff & Yinghao Song & Li Ling, 2024. "Ultra-fast green hydrogen production from municipal wastewater by an integrated forward osmosis-alkaline water electrolysis system," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58320-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.