IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v5y2020i5d10.1038_s41560-020-0550-8.html
   My bibliography  Save this article

Electrolysis of low-grade and saline surface water

Author

Listed:
  • Wenming Tong

    (National University of Ireland Galway
    National University of Ireland Galway)

  • Mark Forster

    (University of Liverpool
    University of Liverpool)

  • Fabio Dionigi

    (Technical University Berlin)

  • Sören Dresp

    (Technical University Berlin)

  • Roghayeh Sadeghi Erami

    (National University of Ireland Galway
    National University of Ireland Galway)

  • Peter Strasser

    (Technical University Berlin)

  • Alexander J. Cowan

    (University of Liverpool
    University of Liverpool)

  • Pau Farràs

    (National University of Ireland Galway
    National University of Ireland Galway)

Abstract

Powered by renewable energy sources such as solar, marine, geothermal and wind, generation of storable hydrogen fuel through water electrolysis provides a promising path towards energy sustainability. However, state-of-the-art electrolysis requires support from associated processes such as desalination of water sources, further purification of desalinated water, and transportation of water, which often contribute financial and energy costs. One strategy to avoid these operations is to develop electrolysers that are capable of operating with impure water feeds directly. Here we review recent developments in electrode materials/catalysts for water electrolysis using low-grade and saline water, a significantly more abundant resource worldwide compared to potable water. We address the associated challenges in design of electrolysers, and discuss future potential approaches that may yield highly active and selective materials for water electrolysis in the presence of common impurities such as metal ions, chloride and bio-organisms.

Suggested Citation

  • Wenming Tong & Mark Forster & Fabio Dionigi & Sören Dresp & Roghayeh Sadeghi Erami & Peter Strasser & Alexander J. Cowan & Pau Farràs, 2020. "Electrolysis of low-grade and saline surface water," Nature Energy, Nature, vol. 5(5), pages 367-377, May.
  • Handle: RePEc:nat:natene:v:5:y:2020:i:5:d:10.1038_s41560-020-0550-8
    DOI: 10.1038/s41560-020-0550-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-020-0550-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-020-0550-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:5:y:2020:i:5:d:10.1038_s41560-020-0550-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.