IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42887-y.html
   My bibliography  Save this article

Developing Ni single-atom sites in carbon nitride for efficient photocatalytic H2O2 production

Author

Listed:
  • Xu Zhang

    (Beijing University of Technology)

  • Hui Su

    (University of Science and Technology of China
    Hunan Normal University)

  • Peixin Cui

    (Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences)

  • Yongyong Cao

    (Jiaxing University)

  • Zhenyuan Teng

    (Nanyang Technological University)

  • Qitao Zhang

    (Shenzhen University)

  • Yang Wang

    (Chongqing University)

  • Yibo Feng

    (Beijing University of Technology)

  • Ran Feng

    (Beijing University of Technology)

  • Jixiang Hou

    (Beijing University of Technology)

  • Xiyuan Zhou

    (Beijing University of Technology)

  • Peijie Ma

    (Beijing University of Technology)

  • Hanwen Hu

    (Beijing University of Technology)

  • Kaiwen Wang

    (Beijing University of Technology)

  • Cong Wang

    (Beijing University of Technology)

  • Liyong Gan

    (Chongqing University)

  • Yunxuan Zhao

    (Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences)

  • Qinghua Liu

    (University of Science and Technology of China)

  • Tierui Zhang

    (Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences)

  • Kun Zheng

    (Beijing University of Technology)

Abstract

Photocatalytic two-electron oxygen reduction to produce high-value hydrogen peroxide (H2O2) is gaining popularity as a promising avenue of research. However, structural evolution mechanisms of catalytically active sites in the entire photosynthetic H2O2 system remains unclear and seriously hinders the development of highly-active and stable H2O2 photocatalysts. Herein, we report a high-loading Ni single-atom photocatalyst for efficient H2O2 synthesis in pure water, achieving an apparent quantum yield of 10.9% at 420 nm and a solar-to-chemical conversion efficiency of 0.82%. Importantly, using in situ synchrotron X-ray absorption spectroscopy and Raman spectroscopy we directly observe that initial Ni-N3 sites dynamically transform into high-valent O1-Ni-N2 sites after O2 adsorption and further evolve to form a key *OOH intermediate before finally forming HOO-Ni-N2. Theoretical calculations and experiments further reveal that the evolution of the active sites structure reduces the formation energy barrier of *OOH and suppresses the O=O bond dissociation, leading to improved H2O2 production activity and selectivity.

Suggested Citation

  • Xu Zhang & Hui Su & Peixin Cui & Yongyong Cao & Zhenyuan Teng & Qitao Zhang & Yang Wang & Yibo Feng & Ran Feng & Jixiang Hou & Xiyuan Zhou & Peijie Ma & Hanwen Hu & Kaiwen Wang & Cong Wang & Liyong Ga, 2023. "Developing Ni single-atom sites in carbon nitride for efficient photocatalytic H2O2 production," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42887-y
    DOI: 10.1038/s41467-023-42887-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42887-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42887-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yiou Wang & Anastasia Vogel & Michael Sachs & Reiner Sebastian Sprick & Liam Wilbraham & Savio J. A. Moniz & Robert Godin & Martijn A. Zwijnenburg & James R. Durrant & Andrew I. Cooper & Junwang Tang, 2019. "Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts," Nature Energy, Nature, vol. 4(9), pages 746-760, September.
    2. Yaning Zhang & Chengsi Pan & Gaoming Bian & Jing Xu & Yuming Dong & Ying Zhang & Yang Lou & Weixu Liu & Yongfa Zhu, 2023. "H2O2 generation from O2 and H2O on a near-infrared absorbing porphyrin supramolecular photocatalyst," Nature Energy, Nature, vol. 8(4), pages 361-371, April.
    3. Yubao Zhao & Peng Zhang & Zhenchun Yang & Lina Li & Jingyu Gao & Sheng Chen & Tengfeng Xie & Caozheng Diao & Shibo Xi & Beibei Xiao & Chun Hu & Wonyong Choi, 2021. "Mechanistic analysis of multiple processes controlling solar-driven H2O2 synthesis using engineered polymeric carbon nitride," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Qingyao Wu & Jingjing Cao & Xiao Wang & Yan Liu & Yajie Zhao & Hui Wang & Yang Liu & Hui Huang & Fan Liao & Mingwang Shao & Zhenghui Kang, 2021. "Author Correction: A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater," Nature Communications, Nature, vol. 12(1), pages 1-2, December.
    5. Jinwei Xu & Xueli Zheng & Zhiping Feng & Zhiyi Lu & Zewen Zhang & William Huang & Yanbin Li & Djordje Vuckovic & Yuanqing Li & Sheng Dai & Guangxu Chen & Kecheng Wang & Hansen Wang & James K. Chen & W, 2021. "Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2," Nature Sustainability, Nature, vol. 4(3), pages 233-241, March.
    6. Qingyao Wu & Jingjing Cao & Xiao Wang & Yan Liu & Yajie Zhao & Hui Wang & Yang Liu & Hui Huang & Fan Liao & Mingwang Shao & Zhenghui Kang, 2021. "A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xidong Zhang & Duoduo Gao & Bicheng Zhu & Bei Cheng & Jiaguo Yu & Huogen Yu, 2024. "Enhancing photocatalytic H2O2 production with Au co-catalysts through electronic structure modification," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Chengxin Zhou & Jian Gao & Yunlong Deng & Ming Wang & Dan Li & Chuan Xia, 2023. "Electric double layer-mediated polarization field for optimizing photogenerated carrier dynamics and thermodynamics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Wei Wang & Qun Song & Qiang Luo & Linqian Li & Xiaobing Huo & Shipeng Chen & Jinyang Li & Yunhong Li & Se Shi & Yihui Yuan & Xiwen Du & Kai Zhang & Ning Wang, 2023. "Photothermal-enabled single-atom catalysts for high-efficiency hydrogen peroxide photosynthesis from natural seawater," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Hong-chao Li & Qiang Wan & Congcong Du & Jiafei Zhao & Fumin Li & Ying Zhang & Yanping Zheng & Mingshu Chen & Kelvin H. L. Zhang & Jianyu Huang & Gang Fu & Sen Lin & Xiaoqing Huang & Haifeng Xiong, 2022. "Layered Pd oxide on PdSn nanowires for boosting direct H2O2 synthesis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Wei-Wei Fang & Gui-Yu Yang & Zi-Hui Fan & Zi-Chao Chen & Xun-Liang Hu & Zhen Zhan & Irshad Hussain & Yang Lu & Tao He & Bi-En Tan, 2023. "Conjugated cross-linked phosphine as broadband light or sunlight-driven photocatalyst for large-scale atom transfer radical polymerization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Fuyang Liu & Peng Zhou & Yanghui Hou & Hao Tan & Yin Liang & Jialiang Liang & Qing Zhang & Shaojun Guo & Meiping Tong & Jinren Ni, 2023. "Covalent organic frameworks for direct photosynthesis of hydrogen peroxide from water, air and sunlight," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Xinzhe Tian & Yinggang Guo & Wankai An & Yun-Lai Ren & Yuchen Qin & Caoyuan Niu & Xin Zheng, 2022. "Coupling photocatalytic water oxidation with reductive transformations of organic molecules," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Liu, Enli & Lin, Xue & Hong, Yuanzhi & Yang, Lan & Luo, Bifu & Shi, Weilong & Shi, Junyou, 2021. "Rational copolymerization strategy engineered C self-doped g-C3N4 for efficient and robust solar photocatalytic H2 evolution," Renewable Energy, Elsevier, vol. 178(C), pages 757-765.
    9. Floriana Moruzzi & Weimin Zhang & Balaji Purushothaman & Soranyel Gonzalez-Carrero & Catherine M. Aitchison & Benjamin Willner & Fabien Ceugniet & Yuanbao Lin & Jan Kosco & Hu Chen & Junfu Tian & Mary, 2023. "Solution-processable polymers of intrinsic microporosity for gas-phase carbon dioxide photoreduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Yongyang Song & Jiajia Zhou & Zhongpeng Zhu & Xiaoxia Li & Yue Zhang & Xinyi Shen & Padraic O’Reilly & Xiuling Li & Xinmiao Liang & Lei Jiang & Shutao Wang, 2023. "Heterostructure particles enable omnidispersible in water and oil towards organic dye recycle," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Chaoran Dong & Yilong Yang & Xuemin Hu & Yoonjun Cho & Gyuyong Jang & Yanhui Ao & Luyang Wang & Jinyou Shen & Jong Hyeok Park & Kan Zhang, 2022. "Self-cycled photo-Fenton-like system based on an artificial leaf with a solar-to-H2O2 conversion efficiency of 1.46%," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Ji Wu & Zhonghuan Liu & Xinyu Lin & Enhui Jiang & Shuai Zhang & Pengwei Huo & Yan Yan & Peng Zhou & Yongsheng Yan, 2022. "Breaking through water-splitting bottlenecks over carbon nitride with fluorination," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Chih-Li Chang & Wei-Cheng Lin & Li-Yu Ting & Chin-Hsuan Shih & Shih-Yuan Chen & Tse-Fu Huang & Hiroyuki Tateno & Jayachandran Jayakumar & Wen-Yang Jao & Chen-Wei Tai & Che-Yi Chu & Chin-Wen Chen & Chi, 2022. "Main-chain engineering of polymer photocatalysts with hydrophilic non-conjugated segments for visible-light-driven hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Liangbo Xie & Pengfei Wang & Yi Li & Dongpeng Zhang & Denghui Shang & Wenwen Zheng & Yuguo Xia & Sihui Zhan & Wenping Hu, 2022. "Pauling-type adsorption of O2 induced electrocatalytic singlet oxygen production on N–CuO for organic pollutants degradation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Yunyang Qian & Yulan Han & Xiyuan Zhang & Ge Yang & Guozhen Zhang & Hai-Long Jiang, 2023. "Computation-based regulation of excitonic effects in donor-acceptor covalent organic frameworks for enhanced photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Shujiao Yang & Kaihang Yue & Xiaohan Liu & Sisi Li & Haoquan Zheng & Ya Yan & Rui Cao & Wei Zhang, 2024. "Electrocatalytic water oxidation with manganese phosphates," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Jaeho Yoon & Hanhwi Jang & Min-Wook Oh & Thomas Hilberath & Frank Hollmann & Yeon Sik Jung & Chan Beum Park, 2022. "Heat-fueled enzymatic cascade for selective oxyfunctionalization of hydrocarbons," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Peng Jiang & Ludan Zhang & Xiaolong Liu & Chenliang Ye & Peng Zhu & Ting Tan & Dingsheng Wang & Yuguang Wang, 2024. "Tuning oxidant and antioxidant activities of ceria by anchoring copper single-site for antibacterial application," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Lei Zhang & Hanwen Liu & Bo Song & Jialun Gu & Lanxi Li & Wenhui Shi & Gan Li & Shiyu Zhong & Hui Liu & Xiaobo Wang & Junxiang Fan & Zhi Zhang & Pengfei Wang & Yonggang Yao & Yusheng Shi & Jian Lu, 2024. "Wood-inspired metamaterial catalyst for robust and high-throughput water purification," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Shuo Zhang & Jianghua Wu & Mengting Zheng & Xin Jin & Zihan Shen & Zhonghua Li & Yanjun Wang & Quan Wang & Xuebin Wang & Hui Wei & Jiangwei Zhang & Peng Wang & Shanqing Zhang & Liyan Yu & Lifeng Dong , 2023. "Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42887-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.