IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57939-8.html
   My bibliography  Save this article

Hydrogen-bonded organic frameworks for photocatalytic synthesis of hydrogen peroxide

Author

Listed:
  • Ji-Hong Zhang

    (Tianjin University of Technology)

  • Zhao-Ming Ge

    (Tianjin University of Technology)

  • Juan Wang

    (Tianjin University of Technology)

  • Di-Chang Zhong

    (Tianjin University of Technology)

  • Tong-Bu Lu

    (Tianjin University of Technology)

Abstract

Photocatalysis provides a sustainable and environment-friendly strategy to produce H2O2, yet the catalytic efficiency of H2O2 overall photosynthesis (O2 + 2H2O → 2H2O2) needs to be further improved, especially in the absence of additional cocatalysts, photosensitizers and sacrificial agents. Here we find that hydrogen-bonded organic frameworks can serve as photocatalysts for H2O2 overall photosynthesis under the above-mentioned conditions. Specifically, we constructed a donor–acceptor hydrogen-bonded organic framework that exhibits a high photocatalytic activity for H2O2 overall photosynthesis, with a production rate of 681.2 μmol g-1 h-1. The control experiments and theoretical calculation revealed that the hydrogen-bonded organic frameworks with donor–acceptor structures can not only accelerate the charge separation and transfer but also optimize the reaction pathways, which significantly boosts the photocatalytic efficiency in H2O2 overall photosynthesis. This work provides insights into the design and development of efficient photocatalysts for overall H2O2 photosynthesis.

Suggested Citation

  • Ji-Hong Zhang & Zhao-Ming Ge & Juan Wang & Di-Chang Zhong & Tong-Bu Lu, 2025. "Hydrogen-bonded organic frameworks for photocatalytic synthesis of hydrogen peroxide," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57939-8
    DOI: 10.1038/s41467-025-57939-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57939-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57939-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xinjian Shi & Samira Siahrostami & Guo-Ling Li & Yirui Zhang & Pongkarn Chakthranont & Felix Studt & Thomas F. Jaramillo & Xiaolin Zheng & Jens K. Nørskov, 2017. "Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    2. Yaning Zhang & Chengsi Pan & Gaoming Bian & Jing Xu & Yuming Dong & Ying Zhang & Yang Lou & Weixu Liu & Yongfa Zhu, 2023. "H2O2 generation from O2 and H2O on a near-infrared absorbing porphyrin supramolecular photocatalyst," Nature Energy, Nature, vol. 8(4), pages 361-371, April.
    3. Yuantao Li & Sishuang Tang & Anna Yusov & James Rose & André Nyberg Borrfors & Chunhua T. Hu & Michael D. Ward, 2019. "Hydrogen-bonded frameworks for molecular structure determination," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    4. Zhongshan Chen & Jingyi Wang & Mengjie Hao & Yinghui Xie & Xiaolu Liu & Hui Yang & Geoffrey I. N. Waterhouse & Xiangke Wang & Shengqian Ma, 2023. "Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Kentaro Mase & Masaki Yoneda & Yusuke Yamada & Shunichi Fukuzumi, 2016. "Seawater usable for production and consumption of hydrogen peroxide as a solar fuel," Nature Communications, Nature, vol. 7(1), pages 1-7, September.
    6. Xu Zhang & Hui Su & Peixin Cui & Yongyong Cao & Zhenyuan Teng & Qitao Zhang & Yang Wang & Yibo Feng & Ran Feng & Jixiang Hou & Xiyuan Zhou & Peijie Ma & Hanwen Hu & Kaiwen Wang & Cong Wang & Liyong Ga, 2023. "Developing Ni single-atom sites in carbon nitride for efficient photocatalytic H2O2 production," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avanti Chakraborty & Akhtar Alam & Uttam Pal & Archisman Sinha & Subhadip Das & Tanusri Saha-Dasgupta & Pradip Pachfule, 2025. "Enhancing photocatalytic hydrogen peroxide generation by tuning hydrazone linkage density in covalent organic frameworks," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    2. Wei Wang & Qun Song & Qiang Luo & Linqian Li & Xiaobing Huo & Shipeng Chen & Jinyang Li & Yunhong Li & Se Shi & Yihui Yuan & Xiwen Du & Kai Zhang & Ning Wang, 2023. "Photothermal-enabled single-atom catalysts for high-efficiency hydrogen peroxide photosynthesis from natural seawater," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Tian Liu & Zhenhua Pan & Junie Jhon M. Vequizo & Kosaku Kato & Binbin Wu & Akira Yamakata & Kenji Katayama & Baoliang Chen & Chiheng Chu & Kazunari Domen, 2022. "Overall photosynthesis of H2O2 by an inorganic semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Chang-Wei Bai & Lian-Lian Liu & Jie-Jie Chen & Fei Chen & Zhi-Quan Zhang & Yi-Jiao Sun & Xin-Jia Chen & Qi Yang & Han-Qing Yu, 2024. "Circumventing bottlenecks in H2O2 photosynthesis over carbon nitride with iodine redox chemistry and electric field effects," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Xiaolu Liu & Yinghui Xie & Mengjie Hao & Yang Li & Zhongshan Chen & Hui Yang & Geoffrey I. N. Waterhouse & Xiangke Wang & Shengqian Ma, 2024. "Secondary metal ion-induced electrochemical reduction of U(VI) to U(IV) solids," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Rashmi Mehrotra & Dongrak Oh & Ji-Wook Jang, 2021. "Unassisted selective solar hydrogen peroxide production by an oxidised buckypaper-integrated perovskite photocathode," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Chaoran Dong & Yilong Yang & Xuemin Hu & Yoonjun Cho & Gyuyong Jang & Yanhui Ao & Luyang Wang & Jinyou Shen & Jong Hyeok Park & Kan Zhang, 2022. "Self-cycled photo-Fenton-like system based on an artificial leaf with a solar-to-H2O2 conversion efficiency of 1.46%," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Yuyan Huang & Minhui Shen & Huijie Yan & Yingge He & Jianqiao Xu & Fang Zhu & Xin Yang & Yu-Xin Ye & Gangfeng Ouyang, 2024. "Achieving a solar-to-chemical efficiency of 3.6% in ambient conditions by inhibiting interlayer charges transport," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Zhiqiang Zheng & Lu Qi & Xiaoyu Luan & Shuya Zhao & Yurui Xue & Yuliang Li, 2024. "Growing highly ordered Pt and Mn bimetallic single atomic layers over graphdiyne," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Changmin Kim & Sung O Park & Sang Kyu Kwak & Zhenhai Xia & Guntae Kim & Liming Dai, 2023. "Concurrent oxygen reduction and water oxidation at high ionic strength for scalable electrosynthesis of hydrogen peroxide," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Heng Zhu & Ximei Lv & Yuexu Wu & Wentao Wang & Yuping Wu & Shicheng Yan & Yuhui Chen, 2024. "Carbonate-carbonate coupling on platinum surface promotes electrochemical water oxidation to hydrogen peroxide," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Shengdong Wang & Zhipeng Xie & Da Zhu & Shuai Fu & Yishi Wu & Hongling Yu & Chuangye Lu & Panke Zhou & Mischa Bonn & Hai I. Wang & Qing Liao & Hong Xu & Xiong Chen & Cheng Gu, 2023. "Efficient photocatalytic production of hydrogen peroxide using dispersible and photoactive porous polymers," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    13. Jian Chen & Feixiang Chen & Xueli Wang & Hongjun Zhuang & Mengnan Guo & Luo Wang & Junze Xie & Le Zhang & Hao Liu & Yuhan Shi & Jiajia Zhou & Xinjie Mao & Muyao Lv & Xingwu Jiang & Jinquan Chen & Yany, 2024. "Ultra-fast photoelectron transfer in bimetallic porphyrin optoelectrode for single neuron modulation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Linjie Zhang & Haihui Hu & Chen Sun & Dongdong Xiao & Hsiao-Tsu Wang & Yi Xiao & Shuwen Zhao & Kuan Hung Chen & Wei-Xuan Lin & Yu-Cheng Shao & Xiuyun Wang & Chih-Wen Pao & Lili Han, 2024. "Bimetallic nanoalloys planted on super-hydrophilic carbon nanocages featuring tip-intensified hydrogen evolution electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Rongchen Shen & Can Huang & Lei Hao & Guijie Liang & Peng Zhang & Qiang Yue & Xin Li, 2025. "Ground-state charge transfer in single-molecule junctions covalent organic frameworks for boosting photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    16. Yinghui Xie & Qiuyu Rong & Fengyi Mao & Shiyu Wang & You Wu & Xiaolu Liu & Mengjie Hao & Zhongshan Chen & Hui Yang & Geoffrey I. N. Waterhouse & Shengqian Ma & Xiangke Wang, 2024. "Engineering the pore environment of antiparallel stacked covalent organic frameworks for capture of iodine pollutants," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Yuki Wada & Pavel M. Usov & Bun Chan & Makoto Mukaida & Ken Ohmori & Yoshio Ando & Haruhiko Fuwa & Hiroyoshi Ohtsu & Masaki Kawano, 2024. "Atomic-resolution structure analysis inside an adaptable porous framework," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Yunchang Liang & Karla Banjac & Kévin Martin & Nicolas Zigon & Seunghwa Lee & Nicolas Vanthuyne & Felipe Andrés Garcés-Pineda & José R. Galán-Mascarós & Xile Hu & Narcis Avarvari & Magalí Lingenfelder, 2022. "Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Kexin Yi & Chao Li & Shaogang Hu & Xiayu Yuan & Bruce E. Logan & Wulin Yang, 2025. "High H2O2 production in membrane-free electrolyzer via anodic bubble shielding towards robust rural disinfection," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    20. Wei Li & Wen Duan & Guocheng Liao & Fanfan Gao & Yusen Wang & Rongxia Cui & Jincai Zhao & Chuanyi Wang, 2024. "0.68% of solar-to-hydrogen efficiency and high photostability of organic-inorganic membrane catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57939-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.