IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28686-x.html
   My bibliography  Save this article

Overall photosynthesis of H2O2 by an inorganic semiconductor

Author

Listed:
  • Tian Liu

    (Zhejiang University)

  • Zhenhua Pan

    (Chuo University)

  • Junie Jhon M. Vequizo

    (Shinshu University)

  • Kosaku Kato

    (Toyota Technological Institute)

  • Binbin Wu

    (Zhejiang University)

  • Akira Yamakata

    (Toyota Technological Institute)

  • Kenji Katayama

    (Chuo University)

  • Baoliang Chen

    (Zhejiang University)

  • Chiheng Chu

    (Zhejiang University)

  • Kazunari Domen

    (Shinshu University
    The University of Tokyo)

Abstract

Artificial photosynthesis of H2O2 using earth-abundant water and oxygen is a promising approach to achieve scalable and cost-effective solar fuel production. Recent studies on this topic have made significant progress, yet are mainly focused on using organic polymers. This set of photocatalysts is susceptible to potent oxidants (e.g. hydroxyl radical) that are inevitably formed during H2O2 generation. Here, we report an inorganic Mo-doped faceted BiVO4 (Mo:BiVO4) system that is resistant to radical oxidation and exhibits a high overall H2O2 photosynthesis efficiency among inorganic photocatalysts, with an apparent quantum yield of 1.2% and a solar-to-chemical conversion efficiency of 0.29% at full spectrum, as well as an apparent quantum yield of 5.8% at 420 nm. The surface-reaction kinetics and selectivity of Mo:BiVO4 were tuned by precisely loading CoOx and Pd on {110} and {010} facets, respectively. Time-resolved spectroscopic investigations of photocarriers suggest that depositing select cocatalysts on distinct facet tailored the interfacial energetics between {110} and {010} facets and enhanced charge separation in Mo:BiVO4, therefore overcoming a key challenge in developing efficient inorganic photocatalysts. The promising H2O2 generation efficiency achieved by delicate design of catalyst spatial and electronic structures sheds light on applying robust inorganic particulate photocatalysts to artificial photosynthesis of H2O2.

Suggested Citation

  • Tian Liu & Zhenhua Pan & Junie Jhon M. Vequizo & Kosaku Kato & Binbin Wu & Akira Yamakata & Kenji Katayama & Baoliang Chen & Chiheng Chu & Kazunari Domen, 2022. "Overall photosynthesis of H2O2 by an inorganic semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28686-x
    DOI: 10.1038/s41467-022-28686-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28686-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28686-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elisabet Romero & Vladimir I. Novoderezhkin & Rienk van Grondelle, 2017. "Quantum design of photosynthesis for bio-inspired solar-energy conversion," Nature, Nature, vol. 543(7645), pages 355-365, March.
    2. Xinjian Shi & Samira Siahrostami & Guo-Ling Li & Yirui Zhang & Pongkarn Chakthranont & Felix Studt & Thomas F. Jaramillo & Xiaolin Zheng & Jens K. Nørskov, 2017. "Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    3. Yasuhiro Shiraishi & Yuki Ueda & Airu Soramoto & Satoshi Hinokuma & Takayuki Hirai, 2020. "Photocatalytic hydrogen peroxide splitting on metal-free powders assisted by phosphoric acid as a stabilizer," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Rengui Li & Fuxiang Zhang & Donge Wang & Jingxiu Yang & Mingrun Li & Jian Zhu & Xin Zhou & Hongxian Han & Can Li, 2013. "Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4," Nature Communications, Nature, vol. 4(1), pages 1-7, June.
    5. Kentaro Mase & Masaki Yoneda & Yusuke Yamada & Shunichi Fukuzumi, 2016. "Seawater usable for production and consumption of hydrogen peroxide as a solar fuel," Nature Communications, Nature, vol. 7(1), pages 1-7, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xidong Zhang & Duoduo Gao & Bicheng Zhu & Bei Cheng & Jiaguo Yu & Huogen Yu, 2024. "Enhancing photocatalytic H2O2 production with Au co-catalysts through electronic structure modification," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Lihua Lin & Yiwen Ma & Junie Jhon M. Vequizo & Mamiko Nakabayashi & Chen Gu & Xiaoping Tao & Hiroaki Yoshida & Yuriy Pihosh & Yuta Nishina & Akira Yamakata & Naoya Shibata & Takashi Hisatomi & Tsuyosh, 2024. "Efficient and stable visible-light-driven Z-scheme overall water splitting using an oxysulfide H2 evolution photocatalyst," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Tian Liu & Zhenhua Pan & Kosaku Kato & Junie Jhon M. Vequizo & Rito Yanagi & Xiaoshan Zheng & Weilai Yu & Akira Yamakata & Baoliang Chen & Shu Hu & Kenji Katayama & Chiheng Chu, 2022. "A general interfacial-energetics-tuning strategy for enhanced artificial photosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian Liu & Zhenhua Pan & Kosaku Kato & Junie Jhon M. Vequizo & Rito Yanagi & Xiaoshan Zheng & Weilai Yu & Akira Yamakata & Baoliang Chen & Shu Hu & Kenji Katayama & Chiheng Chu, 2022. "A general interfacial-energetics-tuning strategy for enhanced artificial photosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Wei Wang & Qun Song & Qiang Luo & Linqian Li & Xiaobing Huo & Shipeng Chen & Jinyang Li & Yunhong Li & Se Shi & Yihui Yuan & Xiwen Du & Kai Zhang & Ning Wang, 2023. "Photothermal-enabled single-atom catalysts for high-efficiency hydrogen peroxide photosynthesis from natural seawater," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Chunzhi Li & Jiali Liu & He Li & Kaifeng Wu & Junhui Wang & Qihua Yang, 2022. "Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Rashmi Mehrotra & Dongrak Oh & Ji-Wook Jang, 2021. "Unassisted selective solar hydrogen peroxide production by an oxidised buckypaper-integrated perovskite photocathode," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Chaoran Dong & Yilong Yang & Xuemin Hu & Yoonjun Cho & Gyuyong Jang & Yanhui Ao & Luyang Wang & Jinyou Shen & Jong Hyeok Park & Kan Zhang, 2022. "Self-cycled photo-Fenton-like system based on an artificial leaf with a solar-to-H2O2 conversion efficiency of 1.46%," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Changmin Kim & Sung O Park & Sang Kyu Kwak & Zhenhai Xia & Guntae Kim & Liming Dai, 2023. "Concurrent oxygen reduction and water oxidation at high ionic strength for scalable electrosynthesis of hydrogen peroxide," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Shengdong Wang & Zhipeng Xie & Da Zhu & Shuai Fu & Yishi Wu & Hongling Yu & Chuangye Lu & Panke Zhou & Mischa Bonn & Hai I. Wang & Qing Liao & Hong Xu & Xiong Chen & Cheng Gu, 2023. "Efficient photocatalytic production of hydrogen peroxide using dispersible and photoactive porous polymers," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Zhao, Yuanyuan & Pang, Zhibin & Duan, Jialong & Duan, Yanyan & Jiao, Zhengbo & Tang, Qunwei, 2018. "Self-powered monoelectrodes made from graphene composite films to harvest rain energy," Energy, Elsevier, vol. 158(C), pages 555-563.
    9. Yusuke Yoneda & Eric A. Arsenault & Shiun-Jr Yang & Kaydren Orcutt & Masakazu Iwai & Graham R. Fleming, 2022. "The initial charge separation step in oxygenic photosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Yunchang Liang & Karla Banjac & Kévin Martin & Nicolas Zigon & Seunghwa Lee & Nicolas Vanthuyne & Felipe Andrés Garcés-Pineda & José R. Galán-Mascarós & Xile Hu & Narcis Avarvari & Magalí Lingenfelder, 2022. "Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Pavlos Psathas & Maria Solakidou & Asterios Mantzanis & Yiannis Deligiannakis, 2021. "Flame Spray Pyrolysis Engineering of Nanosized Mullite-Bi 2 Fe 4 O 9 and Perovskite-BiFeO 3 as Highly Efficient Photocatalysts for O 2 Production from H 2 O Splitting," Energies, MDPI, vol. 14(17), pages 1-16, August.
    12. Lejing Li & Zhuofeng Hu & Yongqiang Kang & Shiyu Cao & Liangpang Xu & Luo Yu & Lizhi Zhang & Jimmy C. Yu, 2023. "Electrochemical generation of hydrogen peroxide from a zinc gallium oxide anode with dual active sites," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. V. P. Singh & Mirgender Kumar & Moolchand Sharma & Deepika Mishra & Kwang-Su Seong & Si-Hyun Park & Rahul Vaish, 2021. "Synthesis of BiF 3 and BiF 3 -Added Plaster of Paris Composites for Photocatalytic Applications," Energies, MDPI, vol. 14(16), pages 1-14, August.
    14. Zhujun Zhang & Takashi Tsuchimochi & Toshiaki Ina & Yoshitaka Kumabe & Shunsuke Muto & Koji Ohara & Hiroki Yamada & Seiichiro L. Ten-no & Takashi Tachikawa, 2022. "Binary dopant segregation enables hematite-based heterostructures for highly efficient solar H2O2 synthesis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Chao Zhen & Xiangtao Chen & Ruotian Chen & Fengtao Fan & Xiaoxiang Xu & Yuyang Kang & Jingdong Guo & Lianzhou Wang & Gao Qing (Max) Lu & Kazunari Domen & Hui-Ming Cheng & Gang Liu, 2024. "Liquid metal-embraced photoactive films for artificial photosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Fang Li & Xiaoyang Yue & Yulong Liao & Liang Qiao & Kangle Lv & Quanjun Xiang, 2023. "Understanding the unique S-scheme charge migration in triazine/heptazine crystalline carbon nitride homojunction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Qin Zhang & Yutao Peng & Jingxin Wang & Longcheng Li & Danjun Yao & Aihua Zhang & Wenhua Wang & Shengjian Kuang & Heng Liao & Qing Zhu & Bangxi Zhang, 2021. "Improving Ecological Functions and Ornamental Values of Traditional Pear Orchard by Co-Planting of Green Manures of Astragalus sinicus L. and Lathyrus cicera L," Sustainability, MDPI, vol. 13(23), pages 1-11, November.
    18. Chencheng Qin & Xiaodong Wu & Lin Tang & Xiaohong Chen & Miao Li & Yi Mou & Bo Su & Sibo Wang & Chengyang Feng & Jiawei Liu & Xingzhong Yuan & Yanli Zhao & Hou Wang, 2023. "Dual donor-acceptor covalent organic frameworks for hydrogen peroxide photosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Lei Fan & Xiaowan Bai & Chuan Xia & Xiao Zhang & Xunhua Zhao & Yang Xia & Zhen-Yu Wu & Yingying Lu & Yuanyue Liu & Haotian Wang, 2022. "CO2/carbonate-mediated electrochemical water oxidation to hydrogen peroxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Ke Xie & Adnan Ozden & Rui Kai Miao & Yuhang Li & David Sinton & Edward H. Sargent, 2022. "Eliminating the need for anodic gas separation in CO2 electroreduction systems via liquid-to-liquid anodic upgrading," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28686-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.