IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59076-8.html
   My bibliography  Save this article

Etched BiVO4 photocatalyst with charge separation efficiency exceeding 90%

Author

Listed:
  • Shuo Wang

    (Nankai University)

  • Chenyang Li

    (Nankai University)

  • Yu Qi

    (Chinese Academy of Sciences)

  • Jiaming Zhang

    (ShanghaiTech University)

  • Ningning Wang

    (Nankai University)

  • Meng Liu

    (ShanghaiTech University)

  • Boyang Zhang

    (ShanghaiTech University)

  • Xuefen Cai

    (Shenzhen University)

  • Hongbo Zhang

    (Nankai University)

  • Su-huai Wei

    (Eastern Institute of Technology)

  • Guijun Ma

    (ShanghaiTech University)

  • Jingxiu Yang

    (Jilin Jianzhu University)

  • Shanshan Chen

    (Nankai University)

  • Fuxiang Zhang

    (Chinese Academy of Sciences)

Abstract

Charge separation of particulate photocatalysts has been considered as the rate-determining step in artificial photocatalysis since the finding of Honda-Fujishima effect, whose efficiency is generally much lower than that of natural photosynthesis. To approach its upper limit, it requires the photoexcited electrons and holes be efficiently transferred to the spatially separated redox reaction sites over a single photocatalyst particle. Herein, it is demonstrated the spatial charge separation among facets of BiVO4:Mo can be notably promoted by creating an electron transfer layer. It not only favors electrons to transfer to its surface, but also promotes the built-in electric field intensity of the inter-facet junction by over 10 times. Consequently, the charge separation efficiency of the modified BiVO4:Mo with loading of CoFeOx oxidation cocatalyst exceeds 90% at 420 nm, comparable to that of the natural photosynthesis system, over which notably enhanced photocatalytic activities are achieved. Our findings demonstrate the effectiveness of electron transfer layer in intensifying charge separation of particulate photocatalysts.

Suggested Citation

  • Shuo Wang & Chenyang Li & Yu Qi & Jiaming Zhang & Ningning Wang & Meng Liu & Boyang Zhang & Xuefen Cai & Hongbo Zhang & Su-huai Wei & Guijun Ma & Jingxiu Yang & Shanshan Chen & Fuxiang Zhang, 2025. "Etched BiVO4 photocatalyst with charge separation efficiency exceeding 90%," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59076-8
    DOI: 10.1038/s41467-025-59076-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59076-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59076-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Beibei Zhang & Shiqiang Yu & Ying Dai & Xiaojuan Huang & Lingjun Chou & Gongxuan Lu & Guojun Dong & Yingpu Bi, 2021. "Nitrogen-incorporation activates NiFeOx catalysts for efficiently boosting oxygen evolution activity and stability of BiVO4 photoanodes," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Yingying Fan & Wencai Zhou & Xueying Qiu & Hongdong Li & Yuheng Jiang & Zhonghui Sun & Dongxue Han & Li Niu & Zhiyong Tang, 2021. "Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate," Nature Sustainability, Nature, vol. 4(6), pages 509-515, June.
    3. Youzi Zhang & YuKe Li & Xu Xin & Yijin Wang & Peng Guo & Ruiling Wang & Bilin Wang & Wenjing Huang & Ana Jorge Sobrido & Xuanhua Li, 2023. "Internal quantum efficiency higher than 100% achieved by combining doping and quantum effects for photocatalytic overall water splitting," Nature Energy, Nature, vol. 8(5), pages 504-514, May.
    4. Lei Luo & Xiaoyu Han & Keran Wang & Youxun Xu & Lunqiao Xiong & Jiani Ma & Zhengxiao Guo & Junwang Tang, 2023. "Nearly 100% selective and visible-light-driven methane conversion to formaldehyde via. single-atom Cu and Wδ+," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Hiroshi Nishiyama & Taro Yamada & Mamiko Nakabayashi & Yoshiki Maehara & Masaharu Yamaguchi & Yasuko Kuromiya & Yoshie Nagatsuma & Hiromasa Tokudome & Seiji Akiyama & Tomoaki Watanabe & Ryoichi Narush, 2021. "Photocatalytic solar hydrogen production from water on a 100-m2 scale," Nature, Nature, vol. 598(7880), pages 304-307, October.
    6. Dongho Lee & Wennie Wang & Chenyu Zhou & Xiao Tong & Mingzhao Liu & Giulia Galli & Kyoung-Shin Choi, 2021. "The impact of surface composition on the interfacial energetics and photoelectrochemical properties of BiVO4," Nature Energy, Nature, vol. 6(3), pages 287-294, March.
    7. Peng Zhou & Ishtiaque Ahmed Navid & Yongjin Ma & Yixin Xiao & Ping Wang & Zhengwei Ye & Baowen Zhou & Kai Sun & Zetian Mi, 2023. "Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting," Nature, Nature, vol. 613(7942), pages 66-70, January.
    8. Ningdong Feng & Huiwen Lin & Hui Song & Longxiao Yang & Daiming Tang & Feng Deng & Jinhua Ye, 2021. "Efficient and selective photocatalytic CH4 conversion to CH3OH with O2 by controlling overoxidation on TiO2," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    9. Rengui Li & Fuxiang Zhang & Donge Wang & Jingxiu Yang & Mingrun Li & Jian Zhu & Xin Zhou & Hongxian Han & Can Li, 2013. "Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4," Nature Communications, Nature, vol. 4(1), pages 1-7, June.
    10. Tsuyoshi Takata & Junzhe Jiang & Yoshihisa Sakata & Mamiko Nakabayashi & Naoya Shibata & Vikas Nandal & Kazuhiko Seki & Takashi Hisatomi & Kazunari Domen, 2020. "Photocatalytic water splitting with a quantum efficiency of almost unity," Nature, Nature, vol. 581(7809), pages 411-414, May.
    11. Qian Wang & Julien Warnan & Santiago Rodríguez-Jiménez & Jane J. Leung & Shafeer Kalathil & Virgil Andrei & Kazunari Domen & Erwin Reisner, 2020. "Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water," Nature Energy, Nature, vol. 5(9), pages 703-710, September.
    12. Ying Wang & Xiaotong Shang & Jinni Shen & Zizhong Zhang & Debao Wang & Jinjin Lin & Jeffrey C. S. Wu & Xianzhi Fu & Xuxu Wang & Can Li, 2020. "Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingying Fan & Yuheng Jiang & Haiting Lin & Jianan Li & Yuanjiang Xie & Anyi Chen & Siyang Li & Dongxue Han & Li Niu & Zhiyong Tang, 2024. "Insight into selectivity of photocatalytic methane oxidation to formaldehyde on tungsten trioxide," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Chengyang Feng & Shouwei Zuo & Miao Hu & Yuanfu Ren & Liwei Xia & Jun Luo & Chen Zou & Sibo Wang & Yihan Zhu & Magnus Rueping & Yu Han & Huabin Zhang, 2024. "Optimizing the reaction pathway of methane photo-oxidation over single copper sites," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Hui Fu & Yaqiang Wu & Yuhao Guo & Takuya Sakurai & Qianqian Zhang & Yuanyuan Liu & Zhaoke Zheng & Hefeng Cheng & Zeyan Wang & Baibiao Huang & Qian Wang & Kazunari Domen & Peng Wang, 2025. "A scalable solar-driven photocatalytic system for separated H2 and O2 production from water," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    4. Chunzhi Li & Jiali Liu & He Li & Kaifeng Wu & Junhui Wang & Qihua Yang, 2022. "Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Qitao Chen & Baodong Mao & Yanhong Liu & Yunjie Zhou & Hui Huang & Song Wang & Longhua Li & Wei-Cheng Yan & Weidong Shi & Zhenhui Kang, 2024. "Designing 2D carbon dot nanoreactors for alcohol oxidation coupled with hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Xianjin Shi & Wei Peng & Yu Huang & Chao Gao & Yiman Fu & Zhenyu Wang & Leting Yang & Zixuan Zhu & Junji Cao & Fei Rao & Gangqiang Zhu & Shuncheng Lee & Yujie Xiong, 2024. "Integrable utilization of intermittent sunlight and residual heat for on-demand CO2 conversion with water," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Yannan Liu & Cheng-Hao Liu & Tushar Debnath & Yong Wang & Darius Pohl & Lucas V. Besteiro & Debora Motta Meira & Shengyun Huang & Fan Yang & Bernd Rellinghaus & Mohamed Chaker & Dmytro F. Perepichka &, 2023. "Silver nanoparticle enhanced metal-organic matrix with interface-engineering for efficient photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Takuya Suguro & Fuminao Kishimoto & Nobuko Kariya & Tsuyoshi Fukui & Mamiko Nakabayashi & Naoya Shibata & Tsuyoshi Takata & Kazunari Domen & Kazuhiro Takanabe, 2022. "A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Yuyan Huang & Minhui Shen & Huijie Yan & Yingge He & Jianqiao Xu & Fang Zhu & Xin Yang & Yu-Xin Ye & Gangfeng Ouyang, 2024. "Achieving a solar-to-chemical efficiency of 3.6% in ambient conditions by inhibiting interlayer charges transport," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Camilo A. Mesa & Michael Sachs & Ernest Pastor & Nicolas Gauriot & Alice J. Merryweather & Miguel A. Gomez-Gonzalez & Konstantin Ignatyev & Sixto Giménez & Akshay Rao & James R. Durrant & Raj Pandya, 2024. "Correlating activities and defects in (photo)electrocatalysts using in-situ multi-modal microscopic imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Jie Zhou & Jie Li & Liang Kan & Lei Zhang & Qing Huang & Yong Yan & Yifa Chen & Jiang Liu & Shun-Li Li & Ya-Qian Lan, 2022. "Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Spandana Gonuguntla & Bhavya Jaksani & Aparna Jamma & Chandra Shobha Vennapoosa & Debabrata Chatterjee & Ujjwal Pal, 2024. "Design principle of anti‐corrosive photocatalyst for large‐scale hydrogen production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(4), July.
    13. Zhouzhou Wang & Haotian Ye & Yixin Li & Bowen Sheng & Ping Wang & Pengfei Ou & Xiao-Yan Li & Tianqi Yu & Zijian Huang & Jinglin Li & Ying Yu & Xinqiang Wang & Zhen Huang & Baowen Zhou, 2025. "Surface-hydrogenated CrMnOx coupled with GaN nanowires for light-driven bioethanol dehydration to ethylene," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    14. Hao, Chunlin & Guo, Guibao & Guo, Xiaohui & An, Shengli, 2024. "In situ thermal-assisted photocatalytic decarboxylation of high-concentration biomass-derived fatty acids to alkanes," Renewable Energy, Elsevier, vol. 237(PA).
    15. Li, Yinan & Li, Lanyu & Yuan, Hongkuan & He, Keji & Chen, Hong & Xie, Jianping & Wang, Biao & Wang, Xiaonan, 2025. "Scaling solar photocatalytic hydrogen production in China: Integrated geospatial-meteorological analysis," Applied Energy, Elsevier, vol. 381(C).
    16. Yaguang Li & Xianhua Bai & Dachao Yuan & Fengyu Zhang & Bo Li & Xingyuan San & Baolai Liang & Shufang Wang & Jun Luo & Guangsheng Fu, 2022. "General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Youxun Xu & Chao Wang & Xiyi Li & Lunqiao Xiong & Tianyu Zhang & Liquan Zhang & Qinghua Zhang & Lin Gu & Yang Lan & Junwang Tang, 2024. "Efficient methane oxidation to formaldehyde via photon–phonon cascade catalysis," Nature Sustainability, Nature, vol. 7(9), pages 1171-1181, September.
    18. Guangri Jia & Fusai Sun & Tao Zhou & Ying Wang & Xiaoqiang Cui & Zhengxiao Guo & Fengtao Fan & Jimmy C. Yu, 2024. "Charge redistribution of a spatially differentiated ferroelectric Bi4Ti3O12 single crystal for photocatalytic overall water splitting," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Sun, Zhen & Wang, Junxiang & Lu, Sen & Zhang, Guan, 2022. "Enzymatic biomass hydrolysis assisted photocatalytic H2 production from water employing porous carbon doped brookite/anatase heterophase titania photocatalyst," Renewable Energy, Elsevier, vol. 197(C), pages 151-160.
    20. Chao Feng & Zhi Liu & Huanxin Ju & Andraž Mavrič & Matjaz Valant & Jie Fu & Beibei Zhang & Yanbo Li, 2024. "Understanding the in-situ transformation of CuxO interlayers to increase the water splitting efficiency in NiO/n-Si photoanodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59076-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.