IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v581y2020i7809d10.1038_s41586-020-2278-9.html
   My bibliography  Save this article

Photocatalytic water splitting with a quantum efficiency of almost unity

Author

Listed:
  • Tsuyoshi Takata

    (Shinshu University)

  • Junzhe Jiang

    (Yamaguchi University)

  • Yoshihisa Sakata

    (Yamaguchi University)

  • Mamiko Nakabayashi

    (The University of Tokyo)

  • Naoya Shibata

    (The University of Tokyo)

  • Vikas Nandal

    (National Institute of Advanced Industrial Science and Technology)

  • Kazuhiko Seki

    (National Institute of Advanced Industrial Science and Technology)

  • Takashi Hisatomi

    (Shinshu University)

  • Kazunari Domen

    (Shinshu University
    Office of University Professors, The University of Tokyo)

Abstract

Overall water splitting, evolving hydrogen and oxygen in a 2:1 stoichiometric ratio, using particulate photocatalysts is a potential means of achieving scalable and economically viable solar hydrogen production. To obtain high solar energy conversion efficiency, the quantum efficiency of the photocatalytic reaction must be increased over a wide range of wavelengths and semiconductors with narrow bandgaps need to be designed. However, the quantum efficiency associated with overall water splitting using existing photocatalysts is typically lower than ten per cent1,2. Thus, whether a particulate photocatalyst can enable a quantum efficiency of 100 per cent for the greatly endergonic water-splitting reaction remains an open question. Here we demonstrate overall water splitting at an external quantum efficiency of up to 96 per cent at wavelengths between 350 and 360 nanometres, which is equivalent to an internal quantum efficiency of almost unity, using a modified aluminium-doped strontium titanate (SrTiO3:Al) photocatalyst3,4. By selectively photodepositing the cocatalysts Rh/Cr2O3 (ref. 5) and CoOOH (refs. 3,6) for the hydrogen and oxygen evolution reactions, respectively, on different crystal facets of the semiconductor particles using anisotropic charge transport, the hydrogen and oxygen evolution reactions could be promoted separately. This enabled multiple consecutive forward charge transfers without backward charge transfer, reaching the upper limit of quantum efficiency for overall water splitting. Our work demonstrates the feasibility of overall water splitting free from charge recombination losses and introduces an ideal cocatalyst/photocatalyst structure for efficient water splitting.

Suggested Citation

  • Tsuyoshi Takata & Junzhe Jiang & Yoshihisa Sakata & Mamiko Nakabayashi & Naoya Shibata & Vikas Nandal & Kazuhiko Seki & Takashi Hisatomi & Kazunari Domen, 2020. "Photocatalytic water splitting with a quantum efficiency of almost unity," Nature, Nature, vol. 581(7809), pages 411-414, May.
  • Handle: RePEc:nat:nature:v:581:y:2020:i:7809:d:10.1038_s41586-020-2278-9
    DOI: 10.1038/s41586-020-2278-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2278-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2278-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jijia Xie & Xiyi Li & Jian Guo & Lei Luo & Juan J. Delgado & Natalia Martsinovich & Junwang Tang, 2023. "Highly selective oxidation of benzene to phenol with air at room temperature promoted by water," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Yimeng Li & Li Yang & Huijie He & Lei Sun & Honglei Wang & Xu Fang & Yanliang Zhao & Daoyuan Zheng & Yu Qi & Zhen Li & Weiqiao Deng, 2022. "In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Lu, Buchu & Yan, Xiangyu & Liu, Qibin, 2023. "Enhanced solar hydrogen generation with the direct coupling of photo and thermal energy – An experimental and mechanism study," Applied Energy, Elsevier, vol. 331(C).
    4. Xinzhe Tian & Yinggang Guo & Wankai An & Yun-Lai Ren & Yuchen Qin & Caoyuan Niu & Xin Zheng, 2022. "Coupling photocatalytic water oxidation with reductive transformations of organic molecules," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Yong Liu & Mingjian Zhang & Zhuan Wang & Jiandong He & Jie Zhang & Sheng Ye & Xiuli Wang & Dongfeng Li & Heng Yin & Qianhong Zhu & Huanwang Jing & Yuxiang Weng & Feng Pan & Ruotian Chen & Can Li & Fen, 2022. "Bipolar charge collecting structure enables overall water splitting on ferroelectric photocatalysts," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Xiyi Li & Chao Wang & Jianlong Yang & Youxun Xu & Yi Yang & Jiaguo Yu & Juan J. Delgado & Natalia Martsinovich & Xiao Sun & Xu-Sheng Zheng & Weixin Huang & Junwang Tang, 2023. "PdCu nanoalloy decorated photocatalysts for efficient and selective oxidative coupling of methane in flow reactors," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Chencheng Qin & Yi Yang & Xiaodong Wu & Long Chen & Zhaoli Liu & Lin Tang & Lai Lyu & Danlian Huang & Dongbo Wang & Chang Zhang & Xingzhong Yuan & Wen Liu & Hou Wang, 2023. "Twistedly hydrophobic basis with suitable aromatic metrics in covalent organic networks govern micropollutant decontamination," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Yaguang Li & Xianhua Bai & Dachao Yuan & Fengyu Zhang & Bo Li & Xingyuan San & Baolai Liang & Shufang Wang & Jun Luo & Guangsheng Fu, 2022. "General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Jie Fu & Zeyu Fan & Mamiko Nakabayashi & Huanxin Ju & Nadiia Pastukhova & Yequan Xiao & Chao Feng & Naoya Shibata & Kazunari Domen & Yanbo Li, 2022. "Interface engineering of Ta3N5 thin film photoanode for highly efficient photoelectrochemical water splitting," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Lakhera, Sandeep Kumar & Rajan, Aswathy & T.P., Rugma & Bernaurdshaw, Neppolian, 2021. "A review on particulate photocatalytic hydrogen production system: Progress made in achieving high energy conversion efficiency and key challenges ahead," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Zhishan Luo & Xiaoyuan Ye & Shijia Zhang & Sikang Xue & Can Yang & Yidong Hou & Wandong Xing & Rong Yu & Jie Sun & Zhiyang Yu & Xinchen Wang, 2022. "Unveiling the charge transfer dynamics steered by built-in electric fields in BiOBr photocatalysts," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Khandelwal, Akshat & Maarisetty, Dileep & Baral, Saroj Sundar, 2022. "Fundamentals and application of single-atom photocatalyst in sustainable energy and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Takuya Suguro & Fuminao Kishimoto & Nobuko Kariya & Tsuyoshi Fukui & Mamiko Nakabayashi & Naoya Shibata & Tsuyoshi Takata & Kazunari Domen & Kazuhiro Takanabe, 2022. "A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Sun, Zhen & Wang, Junxiang & Lu, Sen & Zhang, Guan, 2022. "Enzymatic biomass hydrolysis assisted photocatalytic H2 production from water employing porous carbon doped brookite/anatase heterophase titania photocatalyst," Renewable Energy, Elsevier, vol. 197(C), pages 151-160.
    15. Srabanti Ghosh & Susmita Bera & Soumita Samajdar & Sourabh Pal, 2023. "Phosphorus based hybrid materials for green fuel generation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(1), January.
    16. Vikas Nandal & Ryota Shoji & Hiroyuki Matsuzaki & Akihiro Furube & Lihua Lin & Takashi Hisatomi & Masanori Kaneko & Koichi Yamashita & Kazunari Domen & Kazuhiko Seki, 2021. "Unveiling charge dynamics of visible light absorbing oxysulfide for efficient overall water splitting," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    17. Yan Yang & Xiaoyu Chu & Hong-Yu Zhang & Rui Zhang & Yu-Han Liu & Feng-Ming Zhang & Meng Lu & Zhao-Di Yang & Ya-Qian Lan, 2023. "Engineering β-ketoamine covalent organic frameworks for photocatalytic overall water splitting," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Chunzhi Li & Jiali Liu & He Li & Kaifeng Wu & Junhui Wang & Qihua Yang, 2022. "Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Pan, Hong-Yu & Chen, Xue & Xia, Xin-Lin, 2022. "A review on the evolvement of optical-frequency filtering in photonic devices in 2016–2021," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    20. Kenji Katayama & Kei Kawaguchi & Yuta Egawa & Zhenhua Pan, 2022. "Local Charge Carrier Dynamics for Photocatalytic Materials Using Pattern-Illumination Time-Resolved Phase Microscopy," Energies, MDPI, vol. 15(24), pages 1-13, December.
    21. Sudhagar Pitchaimuthu & Kishore Sridharan & Sanjay Nagarajan & Sengeni Ananthraj & Peter Robertson & Moritz F. Kuehnel & Ángel Irabien & Mercedes Maroto-Valer, 2022. "Solar Hydrogen Fuel Generation from Wastewater—Beyond Photoelectrochemical Water Splitting: A Perspective," Energies, MDPI, vol. 15(19), pages 1-23, October.
    22. Yannan Liu & Cheng-Hao Liu & Tushar Debnath & Yong Wang & Darius Pohl & Lucas V. Besteiro & Debora Motta Meira & Shengyun Huang & Fan Yang & Bernd Rellinghaus & Mohamed Chaker & Dmytro F. Perepichka &, 2023. "Silver nanoparticle enhanced metal-organic matrix with interface-engineering for efficient photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:581:y:2020:i:7809:d:10.1038_s41586-020-2278-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.