IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-35981-8.html
   My bibliography  Save this article

Silver nanoparticle enhanced metal-organic matrix with interface-engineering for efficient photocatalytic hydrogen evolution

Author

Listed:
  • Yannan Liu

    (Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifque (INRS) 1650 Boul. Lionel-Boulet
    Center for Advancing Electronics Dresden (Cfaed), Technische Universität Dresden)

  • Cheng-Hao Liu

    (McGill University)

  • Tushar Debnath

    (Ludwig-Maximilians-University, Königinstr. 10)

  • Yong Wang

    (Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifque (INRS) 1650 Boul. Lionel-Boulet)

  • Darius Pohl

    (Dresden Center for Nanoanalysis (DCN)
    Center for Advancing Electronics Dresden (Cfaed), Technische Universität Dresden)

  • Lucas V. Besteiro

    (CINBIO, Universidade de Vigo)

  • Debora Motta Meira

    (CLS@APS sector 20, Advanced Photon Source, Argonne National Laboratory
    Canadian Light Source Inc.)

  • Shengyun Huang

    (Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifque (INRS) 1650 Boul. Lionel-Boulet)

  • Fan Yang

    (Stanford University)

  • Bernd Rellinghaus

    (Dresden Center for Nanoanalysis (DCN)
    Center for Advancing Electronics Dresden (Cfaed), Technische Universität Dresden)

  • Mohamed Chaker

    (Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifque (INRS) 1650 Boul. Lionel-Boulet)

  • Dmytro F. Perepichka

    (McGill University)

  • Dongling Ma

    (Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifque (INRS) 1650 Boul. Lionel-Boulet)

Abstract

Integrating plasmonic nanoparticles into the photoactive metal-organic matrix is highly desirable due to the plasmonic near field enhancement, complementary light absorption, and accelerated separation of photogenerated charge carriers at the junction interface. The construction of a well-defined, intimate interface is vital for efficient charge carrier separation, however, it remains a challenge in synthesis. Here we synthesize a junction bearing intimate interface, composed of plasmonic Ag nanoparticles and matrix with silver node via a facile one-step approach. The plasmonic effect of Ag nanoparticles on the matrix is visualized through electron energy loss mapping. Moreover, charge carrier transfer from the plasmonic nanoparticles to the matrix is verified through ultrafast transient absorption spectroscopy and in-situ photoelectron spectroscopy. The system delivers highly efficient visible-light photocatalytic H2 generation, surpassing most reported metal-organic framework-based photocatalytic systems. This work sheds light on effective electronic and energy bridging between plasmonic nanoparticles and organic semiconductors.

Suggested Citation

  • Yannan Liu & Cheng-Hao Liu & Tushar Debnath & Yong Wang & Darius Pohl & Lucas V. Besteiro & Debora Motta Meira & Shengyun Huang & Fan Yang & Bernd Rellinghaus & Mohamed Chaker & Dmytro F. Perepichka &, 2023. "Silver nanoparticle enhanced metal-organic matrix with interface-engineering for efficient photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35981-8
    DOI: 10.1038/s41467-023-35981-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-35981-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-35981-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hiroshi Nishiyama & Taro Yamada & Mamiko Nakabayashi & Yoshiki Maehara & Masaharu Yamaguchi & Yasuko Kuromiya & Yoshie Nagatsuma & Hiromasa Tokudome & Seiji Akiyama & Tomoaki Watanabe & Ryoichi Narush, 2021. "Photocatalytic solar hydrogen production from water on a 100-m2 scale," Nature, Nature, vol. 598(7880), pages 304-307, October.
    2. Yannan Liu & Chuanshuang Chen & Jesus Valdez & Debora Motta Meira & Wanting He & Yong Wang & Catalin Harnagea & Qiongqiong Lu & Tugrul Guner & Hao Wang & Cheng-Hao Liu & Qingzhe Zhang & Shengyun Huang, 2021. "Phase-enabled metal-organic framework homojunction for highly selective CO2 photoreduction," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Tsuyoshi Takata & Junzhe Jiang & Yoshihisa Sakata & Mamiko Nakabayashi & Naoya Shibata & Vikas Nandal & Kazuhiko Seki & Takashi Hisatomi & Kazunari Domen, 2020. "Photocatalytic water splitting with a quantum efficiency of almost unity," Nature, Nature, vol. 581(7809), pages 411-414, May.
    4. Xinyu Huang & Hongbo Li & Chunfeng Zhang & Shijing Tan & Zhangzhang Chen & Lan Chen & Zhenda Lu & Xiaoyong Wang & Min Xiao, 2019. "Efficient plasmon-hot electron conversion in Ag–CsPbBr3 hybrid nanocrystals," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    5. Yazhou Zhou & Xiafang Tao & Guangbo Chen & Ruihu Lu & Ding Wang & Ming-Xi Chen & Enquan Jin & Juan Yang & Hai-Wei Liang & Yan Zhao & Xinliang Feng & Akimitsu Narita & Klaus Müllen, 2020. "Multilayer stabilization for fabricating high-loading single-atom catalysts," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    6. Shuai Bi & Can Yang & Wenbei Zhang & Junsong Xu & Lingmei Liu & Dongqing Wu & Xinchen Wang & Yu Han & Qifeng Liang & Fan Zhang, 2019. "Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    7. Tushar Debnath & Debalaya Sarker & He Huang & Zhong-Kang Han & Amrita Dey & Lakshminarayana Polavarapu & Sergey V. Levchenko & Jochen Feldmann, 2021. "Coherent vibrational dynamics reveals lattice anharmonicity in organic–inorganic halide perovskite nanocrystals," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. Ruotian Chen & Shan Pang & Hongyu An & Jian Zhu & Sheng Ye & Yuying Gao & Fengtao Fan & Can Li, 2018. "Charge separation via asymmetric illumination in photocatalytic Cu2O particles," Nature Energy, Nature, vol. 3(8), pages 655-663, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takuya Suguro & Fuminao Kishimoto & Nobuko Kariya & Tsuyoshi Fukui & Mamiko Nakabayashi & Naoya Shibata & Tsuyoshi Takata & Kazunari Domen & Kazuhiro Takanabe, 2022. "A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Yong Liu & Mingjian Zhang & Zhuan Wang & Jiandong He & Jie Zhang & Sheng Ye & Xiuli Wang & Dongfeng Li & Heng Yin & Qianhong Zhu & Huanwang Jing & Yuxiang Weng & Feng Pan & Ruotian Chen & Can Li & Fen, 2022. "Bipolar charge collecting structure enables overall water splitting on ferroelectric photocatalysts," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Yaguang Li & Xianhua Bai & Dachao Yuan & Fengyu Zhang & Bo Li & Xingyuan San & Baolai Liang & Shufang Wang & Jun Luo & Guangsheng Fu, 2022. "General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Sun, Zhen & Wang, Junxiang & Lu, Sen & Zhang, Guan, 2022. "Enzymatic biomass hydrolysis assisted photocatalytic H2 production from water employing porous carbon doped brookite/anatase heterophase titania photocatalyst," Renewable Energy, Elsevier, vol. 197(C), pages 151-160.
    5. Jie Fu & Zeyu Fan & Mamiko Nakabayashi & Huanxin Ju & Nadiia Pastukhova & Yequan Xiao & Chao Feng & Naoya Shibata & Kazunari Domen & Yanbo Li, 2022. "Interface engineering of Ta3N5 thin film photoanode for highly efficient photoelectrochemical water splitting," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Yimeng Li & Li Yang & Huijie He & Lei Sun & Honglei Wang & Xu Fang & Yanliang Zhao & Daoyuan Zheng & Yu Qi & Zhen Li & Weiqiao Deng, 2022. "In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Isaac Holmes-Gentle & Saurabh Tembhurne & Clemens Suter & Sophia Haussener, 2023. "Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device," Nature Energy, Nature, vol. 8(6), pages 586-596, June.
    8. Vikas Nandal & Ryota Shoji & Hiroyuki Matsuzaki & Akihiro Furube & Lihua Lin & Takashi Hisatomi & Masanori Kaneko & Koichi Yamashita & Kazunari Domen & Kazuhiko Seki, 2021. "Unveiling charge dynamics of visible light absorbing oxysulfide for efficient overall water splitting," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    9. Chunzhi Li & Jiali Liu & He Li & Kaifeng Wu & Junhui Wang & Qihua Yang, 2022. "Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Xuan Trung Nguyen & Katrin Winte & Daniel Timmer & Yevgeny Rakita & Davide Raffaele Ceratti & Sigalit Aharon & Muhammad Sufyan Ramzan & Caterina Cocchi & Michael Lorke & Frank Jahnke & David Cahen & C, 2023. "Phonon-driven intra-exciton Rabi oscillations in CsPbBr3 halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Xinyi Zhang & Michael Schwarze & Reinhard Schomäcker & Roel Krol & Fatwa F. Abdi, 2023. "Life cycle net energy assessment of sustainable H2 production and hydrogenation of chemicals in a coupled photoelectrochemical device," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Wei-Wei Fang & Gui-Yu Yang & Zi-Hui Fan & Zi-Chao Chen & Xun-Liang Hu & Zhen Zhan & Irshad Hussain & Yang Lu & Tao He & Bi-En Tan, 2023. "Conjugated cross-linked phosphine as broadband light or sunlight-driven photocatalyst for large-scale atom transfer radical polymerization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Kenji Katayama & Kei Kawaguchi & Yuta Egawa & Zhenhua Pan, 2022. "Local Charge Carrier Dynamics for Photocatalytic Materials Using Pattern-Illumination Time-Resolved Phase Microscopy," Energies, MDPI, vol. 15(24), pages 1-13, December.
    14. Lu, Buchu & Yan, Xiangyu & Liu, Qibin, 2023. "Enhanced solar hydrogen generation with the direct coupling of photo and thermal energy – An experimental and mechanism study," Applied Energy, Elsevier, vol. 331(C).
    15. Maria-Anna Gatou & Panagiota Bika & Thomas Stergiopoulos & Panagiotis Dallas & Evangelia A. Pavlatou, 2021. "Recent Advances in Covalent Organic Frameworks for Heavy Metal Removal Applications," Energies, MDPI, vol. 14(11), pages 1-26, May.
    16. Fuyang Liu & Peng Zhou & Yanghui Hou & Hao Tan & Yin Liang & Jialiang Liang & Qing Zhang & Shaojun Guo & Meiping Tong & Jinren Ni, 2023. "Covalent organic frameworks for direct photosynthesis of hydrogen peroxide from water, air and sunlight," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Jining Guo & Yuecheng Zhang & Ali Zavabeti & Kaifei Chen & Yalou Guo & Guoping Hu & Xiaolei Fan & Gang Kevin Li, 2022. "Hydrogen production from the air," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Xiyi Li & Chao Wang & Jianlong Yang & Youxun Xu & Yi Yang & Jiaguo Yu & Juan J. Delgado & Natalia Martsinovich & Xiao Sun & Xu-Sheng Zheng & Weixin Huang & Junwang Tang, 2023. "PdCu nanoalloy decorated photocatalysts for efficient and selective oxidative coupling of methane in flow reactors," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Lakhera, Sandeep Kumar & Rajan, Aswathy & T.P., Rugma & Bernaurdshaw, Neppolian, 2021. "A review on particulate photocatalytic hydrogen production system: Progress made in achieving high energy conversion efficiency and key challenges ahead," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Srabanti Ghosh & Susmita Bera & Soumita Samajdar & Sourabh Pal, 2023. "Phosphorus based hybrid materials for green fuel generation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(1), January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35981-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.