IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56277-z.html
   My bibliography  Save this article

Surface-hydrogenated CrMnOx coupled with GaN nanowires for light-driven bioethanol dehydration to ethylene

Author

Listed:
  • Zhouzhou Wang

    (Shanghai Jiao Tong University
    Central China Normal University)

  • Haotian Ye

    (Peking University)

  • Yixin Li

    (Shanghai Jiao Tong University)

  • Bowen Sheng

    (Peking University)

  • Ping Wang

    (Peking University)

  • Pengfei Ou

    (National University of Singapore
    Northwestern University)

  • Xiao-Yan Li

    (Northwestern University)

  • Tianqi Yu

    (Shanghai Jiao Tong University)

  • Zijian Huang

    (Shanghai Jiao Tong University)

  • Jinglin Li

    (Shanghai Jiao Tong University)

  • Ying Yu

    (Central China Normal University)

  • Xinqiang Wang

    (Peking University
    Peking University
    Peking University)

  • Zhen Huang

    (Shanghai Jiao Tong University)

  • Baowen Zhou

    (Shanghai Jiao Tong University)

Abstract

Light-driven bioethanol dehydration offers attractive outlooks for the sustainable production of ethylene. Herein, a surface-hydrogenated CrMnOx is coupled with GaN nanowires (GaN@CMO-H) for light-driven ethanol dehydration to ethylene. Through combined experimental and computational investigations, a surface hydrogen-replenishment mechanism is proposed to disclose the ethanol dehydration pathway over GaN@CMO-H. Moreover, the surface-hydrogenated GaN@CMO-H can significantly lower the reaction energy barrier of the C2H5OH-to-C2H4 conversion by switching the rate-determining reaction step compared to both GaN and GaN@CMO. Consequently, the surface-hydrogenated GaN@CMO-H illustrates a considerable ethylene production activity of 1.78 mol·gcat−1·h−1 with a high turnover number of 94,769 mole ethylene per mole CrMnOx. This work illustrates a new route for sustainable ethylene production with the only use of bioethanol and sunlight beyond fossil fuels.

Suggested Citation

  • Zhouzhou Wang & Haotian Ye & Yixin Li & Bowen Sheng & Ping Wang & Pengfei Ou & Xiao-Yan Li & Tianqi Yu & Zijian Huang & Jinglin Li & Ying Yu & Xinqiang Wang & Zhen Huang & Baowen Zhou, 2025. "Surface-hydrogenated CrMnOx coupled with GaN nanowires for light-driven bioethanol dehydration to ethylene," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56277-z
    DOI: 10.1038/s41467-025-56277-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56277-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56277-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiaxin Guo & Yao Zheng & Zhenpeng Hu & Caiyan Zheng & Jing Mao & Kun Du & Mietek Jaroniec & Shi-Zhang Qiao & Tao Ling, 2023. "Direct seawater electrolysis by adjusting the local reaction environment of a catalyst," Nature Energy, Nature, vol. 8(3), pages 264-272, March.
    2. Hiroshi Nishiyama & Taro Yamada & Mamiko Nakabayashi & Yoshiki Maehara & Masaharu Yamaguchi & Yasuko Kuromiya & Yoshie Nagatsuma & Hiromasa Tokudome & Seiji Akiyama & Tomoaki Watanabe & Ryoichi Narush, 2021. "Photocatalytic solar hydrogen production from water on a 100-m2 scale," Nature, Nature, vol. 598(7880), pages 304-307, October.
    3. Duo Wei & Rui Sang & Peter Sponholz & Henrik Junge & Matthias Beller, 2022. "Reversible hydrogenation of carbon dioxide to formic acid using a Mn-pincer complex in the presence of lysine," Nature Energy, Nature, vol. 7(5), pages 438-447, May.
    4. Peng Zhou & Ishtiaque Ahmed Navid & Yongjin Ma & Yixin Xiao & Ping Wang & Zhengwei Ye & Baowen Zhou & Kai Sun & Zetian Mi, 2023. "Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting," Nature, Nature, vol. 613(7942), pages 66-70, January.
    5. Jinglin Li & Bowen Sheng & Yiqing Chen & Jiajia Yang & Ping Wang & Yixin Li & Tianqi Yu & Hu Pan & Liang Qiu & Ying Li & Jun Song & Lei Zhu & Xinqiang Wang & Zhen Huang & Baowen Zhou, 2024. "Utilizing full-spectrum sunlight for ammonia decomposition to hydrogen over GaN nanowires-supported Ru nanoparticles on silicon," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Nengchao Luo & Tiziano Montini & Jian Zhang & Paolo Fornasiero & Emiliano Fonda & Tingting Hou & Wei Nie & Jianmin Lu & Junxue Liu & Marc Heggen & Long Lin & Changtong Ma & Min Wang & Fengtao Fan & Sh, 2019. "Visible-light-driven coproduction of diesel precursors and hydrogen from lignocellulose-derived methylfurans," Nature Energy, Nature, vol. 4(7), pages 575-584, July.
    7. Rong Yang & Yu Wang & Jian-Wei Cao & Zi-Ming Ye & Tony Pham & Katherine A. Forrest & Rajamani Krishna & Hongwei Chen & Libo Li & Bo-Kai Ling & Tao Zhang & Tong Gao & Xue Jiang & Xiang-Ou Xu & Qian-Hao, 2024. "Hydrogen bond unlocking-driven pore structure control for shifting multi-component gas separation function," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Jieyuan Li & Ruimin Chen & Jielin Wang & Ying Zhou & Guidong Yang & Fan Dong, 2022. "Subnanometric alkaline-earth oxide clusters for sustainable nitrate to ammonia photosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Pu Wang & Xingyu Zhang & Run Shi & Jiaqi Zhao & Geoffrey I. N. Waterhouse & Junwang Tang & Tierui Zhang, 2024. "Photocatalytic ethylene production by oxidative dehydrogenation of ethane with dioxygen on ZnO-supported PdZn intermetallic nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qitao Chen & Baodong Mao & Yanhong Liu & Yunjie Zhou & Hui Huang & Song Wang & Longhua Li & Wei-Cheng Yan & Weidong Shi & Zhenhui Kang, 2024. "Designing 2D carbon dot nanoreactors for alcohol oxidation coupled with hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Li, Yinan & Li, Lanyu & Yuan, Hongkuan & He, Keji & Chen, Hong & Xie, Jianping & Wang, Biao & Wang, Xiaonan, 2025. "Scaling solar photocatalytic hydrogen production in China: Integrated geospatial-meteorological analysis," Applied Energy, Elsevier, vol. 381(C).
    3. Shuo Wang & Chenyang Li & Yu Qi & Jiaming Zhang & Ningning Wang & Meng Liu & Boyang Zhang & Xuefen Cai & Hongbo Zhang & Su-huai Wei & Guijun Ma & Jingxiu Yang & Shanshan Chen & Fuxiang Zhang, 2025. "Etched BiVO4 photocatalyst with charge separation efficiency exceeding 90%," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    4. Cruz, Pedro L. & Dufour, Javier & Iribarren, Diego, 2023. "Conceptualization and application of an environmental dashboard to benchmark technical aspects in photocatalytic hydrogen production," Renewable Energy, Elsevier, vol. 210(C), pages 424-430.
    5. Chen, Bi-Shuang & Zeng, Yong-Yi & Liu, Lan & Chen, Lei & Duan, Peigao & Luque, Rafael & Ge, Ran & Zhang, Wuyuan, 2022. "Advances in catalytic decarboxylation of bioderived fatty acids to diesel-range alkanes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Rui Sang & Carolin Amber Martina Stein & Thomas Schareina & Yuya Hu & Alexander Léval & Jonas Massa & Volkan Turan & Peter Sponholz & Duo Wei & Ralf Jackstell & Henrik Junge & Matthias Beller, 2024. "Development of a practical formate/bicarbonate energy system," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Zhi-Quan Zhang & Pi-Jun Duan & Chang-Wei Bai & Xin-Jia Chen & Jing Wang & Fei Chen, 2025. "Surface-hydroxylated single-atom catalyst with an isolated Co-O-Zn configuration achieves high selectivity in regulating active species," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    8. Yu Shen & Xiao-Long Zhang & Ming-Rong Qu & Jie Ma & Sheng Zhu & Yu-Lin Min & Min-Rui Gao & Shu-Hong Yu, 2024. "Cr dopant mediates hydroxyl spillover on RuO2 for high-efficiency proton exchange membrane electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Guo, Liping & Gao, Jinyu & Huang, Qi & Wang, Xuepeng & Li, Zhenzi & Li, Mingxia & Zhou, Wei, 2024. "Element engineering in graphitic carbon nitride photocatalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    10. Isaac Holmes-Gentle & Saurabh Tembhurne & Clemens Suter & Sophia Haussener, 2023. "Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device," Nature Energy, Nature, vol. 8(6), pages 586-596, June.
    11. Xiangyu Meng & Chuntong Zhu & Xin Wang & Zehua Liu & Mengmeng Zhu & Kuibo Yin & Ran Long & Liuning Gu & Xinxing Shao & Litao Sun & Yueming Sun & Yunqian Dai & Yujie Xiong, 2023. "Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Xinyi Zhang & Michael Schwarze & Reinhard Schomäcker & Roel Krol & Fatwa F. Abdi, 2023. "Life cycle net energy assessment of sustainable H2 production and hydrogenation of chemicals in a coupled photoelectrochemical device," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Hao, Chunlin & Guo, Guibao & Guo, Xiaohui & An, Shengli, 2024. "In situ thermal-assisted photocatalytic decarboxylation of high-concentration biomass-derived fatty acids to alkanes," Renewable Energy, Elsevier, vol. 237(PA).
    14. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Xiaowei Shi & Chao Dai & Xin Wang & Jiayue Hu & Junying Zhang & Lingxia Zheng & Liang Mao & Huajun Zheng & Mingshan Zhu, 2022. "Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Wang, Yangyang & Liu, Yangyang & Xu, Zaifeng & Yin, Kexin & Zhou, Yaru & Zhang, Jifu & Cui, Peizhe & Ma, Shinan & Wang, Yinglong & Zhu, Zhaoyou, 2024. "A review on renewable energy-based chemical engineering design and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    17. Hui Song & Kai Sun & Hengming Huang & Shangbo Ning & Shengyao Wang & Zhuan Wang & Yuxiang Weng & Yi Cui & Yifan Li & Xu-sheng Wang & Defa Wang & Lequan Liu & Zhou-jun Wang & Jinhua Ye, 2025. "Integrating photochemical and photothermal effects for selective oxidative coupling of methane into C2+ hydrocarbons with multiple active sites," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    18. Mahdi Takach & Mirza Sarajlić & Dorothee Peters & Michael Kroener & Frank Schuldt & Karsten von Maydell, 2022. "Review of Hydrogen Production Techniques from Water Using Renewable Energy Sources and Its Storage in Salt Caverns," Energies, MDPI, vol. 15(4), pages 1-17, February.
    19. Changhao Liu & Ningsi Zhang & Yang Li & Rongli Fan & Wenjing Wang & Jianyong Feng & Chen Liu & Jiaou Wang & Weichang Hao & Zhaosheng Li & Zhigang Zou, 2023. "Long-term durability of metastable β-Fe2O3 photoanodes in highly corrosive seawater," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Yannan Liu & Cheng-Hao Liu & Tushar Debnath & Yong Wang & Darius Pohl & Lucas V. Besteiro & Debora Motta Meira & Shengyun Huang & Fan Yang & Bernd Rellinghaus & Mohamed Chaker & Dmytro F. Perepichka &, 2023. "Silver nanoparticle enhanced metal-organic matrix with interface-engineering for efficient photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56277-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.