IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v8y2023i3d10.1038_s41560-023-01195-x.html
   My bibliography  Save this article

Direct seawater electrolysis by adjusting the local reaction environment of a catalyst

Author

Listed:
  • Jiaxin Guo

    (Tianjin University)

  • Yao Zheng

    (The University of Adelaide)

  • Zhenpeng Hu

    (Nankai University)

  • Caiyan Zheng

    (Nankai University)

  • Jing Mao

    (Tianjin University)

  • Kun Du

    (Tianjin University)

  • Mietek Jaroniec

    (Kent State University)

  • Shi-Zhang Qiao

    (The University of Adelaide)

  • Tao Ling

    (Tianjin University)

Abstract

The use of vast amounts of high-purity water for hydrogen production may aggravate the shortage of freshwater resources. Seawater is abundant but must be desalinated before use in typical proton exchange membrane (PEM) electrolysers. Here we report direct electrolysis of real seawater that has not been alkalised nor acidified, achieving long-term stability exceeding 100 h at 500 mA cm−2 and similar performance to a typical PEM electrolyser operating in high-purity water. This is achieved by introducing a Lewis acid layer (for example, Cr2O3) on transition metal oxide catalysts to dynamically split water molecules and capture hydroxyl anions. Such in situ generated local alkalinity facilitates the kinetics of both electrode reactions and avoids chloride attack and precipitate formation on the electrodes. A flow-type natural seawater electrolyser with Lewis acid-modified electrodes (Cr2O3–CoOx) exhibits the industrially required current density of 1.0 A cm−2 at 1.87 V and 60 °C.

Suggested Citation

  • Jiaxin Guo & Yao Zheng & Zhenpeng Hu & Caiyan Zheng & Jing Mao & Kun Du & Mietek Jaroniec & Shi-Zhang Qiao & Tao Ling, 2023. "Direct seawater electrolysis by adjusting the local reaction environment of a catalyst," Nature Energy, Nature, vol. 8(3), pages 264-272, March.
  • Handle: RePEc:nat:natene:v:8:y:2023:i:3:d:10.1038_s41560-023-01195-x
    DOI: 10.1038/s41560-023-01195-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-023-01195-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-023-01195-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shujiao Yang & Kaihang Yue & Xiaohan Liu & Sisi Li & Haoquan Zheng & Ya Yan & Rui Cao & Wei Zhang, 2024. "Electrocatalytic water oxidation with manganese phosphates," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Sixie Zhang & Yunan Wang & Shuyu Li & Zhongfeng Wang & Haocheng Chen & Li Yi & Xu Chen & Qihao Yang & Wenwen Xu & Aiying Wang & Zhiyi Lu, 2023. "Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Fei Lv & Jiazhe Wu & Xuan Liu & Zhihao Zheng & Lixia Pan & Xuewen Zheng & Liejin Guo & Yubin Chen, 2024. "Decoupled electrolysis for hydrogen production and hydrazine oxidation via high-capacity and stable pre-protonated vanadium hexacyanoferrate," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Xin Kang & Fengning Yang & Zhiyuan Zhang & Heming Liu & Shiyu Ge & Shuqi Hu & Shaohai Li & Yuting Luo & Qiangmin Yu & Zhibo Liu & Qiang Wang & Wencai Ren & Chenghua Sun & Hui-Ming Cheng & Bilu Liu, 2023. "A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Ling Zhou & Daying Guo & Lianhui Wu & Zhixi Guan & Chao Zou & Huile Jin & Guoyong Fang & Xi’an Chen & Shun Wang, 2024. "A restricted dynamic surface self-reconstruction toward high-performance of direct seawater oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Mengjun Xiao & Qianbao Wu & Ruiqi Ku & Liujiang Zhou & Chang Long & Junwu Liang & Andraž Mavrič & Lei Li & Jing Zhu & Matjaz Valant & Jiong Li & Zhenhua Zeng & Chunhua Cui, 2023. "Self-adaptive amorphous CoOxCly electrocatalyst for sustainable chlorine evolution in acidic brine," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:8:y:2023:i:3:d:10.1038_s41560-023-01195-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.