IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i1p524-533.html
   My bibliography  Save this article

Distributed hydrogen production from ethanol in a microfuel processor: Issues and challenges

Author

Listed:
  • Moharana, Manoj Kumar
  • Peela, Nageswara Rao
  • Khandekar, Sameer
  • Kunzru, Deepak

Abstract

In the contemporary era of looming energy crunch, hydrogen fuel, obtained from ethanol, is a potentially strong contender as an energy carrier, based on a renewable source. Moreover, acknowledging the critical importance of distributed power devices and systems on one hand and the importance of microscale engineering on the other, we envisage developing an ethanol-based distributed hydrogen production device of the order of 1Â kW using steam reforming of ethanol (SRE). In this paper, the key issues related to this microscale distributed hydrogen production strategy are discussed in view of its potential application for polymer electrolyte membrane (PEM) fuel cells. The design challenges and issues related to various essential micro-devices, viz., the pre-heater, fuel reformer, water gas shift (WGS) reactor, carbon monoxide preferential oxidation (CO PrOX), required for efficient production of H2 with very low concentration of CO contamination, are discussed. Various production schemes are carefully evaluated for the purpose. Need for integration of micro-devices is emphasized to obtain a compact fuel processor system.

Suggested Citation

  • Moharana, Manoj Kumar & Peela, Nageswara Rao & Khandekar, Sameer & Kunzru, Deepak, 2011. "Distributed hydrogen production from ethanol in a microfuel processor: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 524-533, January.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:1:p:524-533
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00263-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xuan, Jin & Leung, Michael K.H. & Leung, Dennis Y.C. & Ni, Meng, 2009. "A review of biomass-derived fuel processors for fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1301-1313, August.
    2. Ni, Meng & Leung, Michael K.H. & Leung, Dennis Y.C. & Sumathy, K., 2007. "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 401-425, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Purnima, P. & Jayanti, S., 2017. "Water neutrality and waste heat management in ethanol reformer - HTPEMFC integrated system for on-board hydrogen generation," Applied Energy, Elsevier, vol. 199(C), pages 169-179.
    2. Yao, Xingjun & Zhang, Yan & Du, Lingyun & Liu, Junhai & Yao, Jianfeng, 2015. "Review of the applications of microreactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 519-539.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Tengfei & Zhang, Shaoyin & Chen, Yongdong & Wang, Dazhi & Cai, Weijie, 2015. "Hydrogen production from ethanol reforming: Catalysts and reaction mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 132-148.
    2. Yasuda, Masahide & Matsumoto, Tomoko & Yamashita, Toshiaki, 2018. "Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1627-1635.
    3. Yilmaz, Ceyhun & Kanoglu, Mehmet, 2014. "Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis," Energy, Elsevier, vol. 69(C), pages 592-602.
    4. Keramiotis, Ch. & Vourliotakis, G. & Skevis, G. & Founti, M.A. & Esarte, C. & Sánchez, N.E. & Millera, A. & Bilbao, R. & Alzueta, M.U., 2012. "Experimental and computational study of methane mixtures pyrolysis in a flow reactor under atmospheric pressure," Energy, Elsevier, vol. 43(1), pages 103-110.
    5. Ansis Mezulis & Christiaan Richter & Peteris Lesnicenoks & Ainars Knoks & Sarunas Varnagiris & Marius Urbonavicius & Darius Milcius & Janis Kleperis, 2023. "Studies on Water–Aluminum Scrap Reaction Kinetics in Two Steps and the Efficiency of Green Hydrogen Production," Energies, MDPI, vol. 16(14), pages 1-17, July.
    6. Shuyan Yu & Huiying Zhang & Congju Li, 2023. "Solvothermal In-Situ Synthesis of MIL-53(Fe)@Carbon Felt Photocatalytic Membrane for Rhodamine B Degradation," IJERPH, MDPI, vol. 20(5), pages 1-13, March.
    7. Sivasakthi, Sethuraman & Gurunathan, Karuppasamy, 2020. "Graphitic carbon nitride bedecked with CuO/ZnO hetero-interface microflower towards high photocatalytic performance," Renewable Energy, Elsevier, vol. 159(C), pages 786-800.
    8. Wang, Chaoqi & Lü, Zhe & Li, Jingwei & Cao, Zhiqun & Wei, Bo & Li, Huan & Shang, Minghao & Su, Chaoxiang, 2020. "Efficient use of waste carton for power generation, tar and fertilizer through direct carbon solid oxide fuel cell," Renewable Energy, Elsevier, vol. 158(C), pages 410-420.
    9. Yan, Jianhui & Yang, Haihua & Tang, Yougen & Lu, Zhouguang & Zheng, Shuqin & Yao, Maohai & Han, Yong, 2009. "Synthesis and photocatalytic activity of CuYyFe2−yO4–CuCo2O4 nanocomposites for H2 evolution under visible light irradiation," Renewable Energy, Elsevier, vol. 34(11), pages 2399-2403.
    10. Sharma, Shailja & Pai, Mrinal R. & Kaur, Gurpreet & Divya, & Satsangi, Vibha R. & Dass, Sahab & Shrivastav, Rohit, 2019. "Efficient hydrogen generation on CuO core/AgTiO2 shell nano-hetero-structures by photocatalytic splitting of water," Renewable Energy, Elsevier, vol. 136(C), pages 1202-1216.
    11. Samokhvalov, Alexander, 2017. "Hydrogen by photocatalysis with nitrogen codoped titanium dioxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 981-1000.
    12. Mohamad Fakhrul Ridhwan Samsudin, 2023. "Photovoltaic-Assisted Photo(electro)catalytic Hydrogen Production: A Review," Energies, MDPI, vol. 16(15), pages 1-19, August.
    13. Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).
    14. Dingenen, Fons & Verbruggen, Sammy W., 2021. "Tapping hydrogen fuel from the ocean: A review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    15. Wang, Zhen & Wang, Yiping & Vivar, Marta & Fuentes, Manuel & Zhu, Li & Qin, Lianwei, 2014. "Photovoltaic and photocatalytic performance study of SOLWAT system for the degradation of Methylene Blue, Acid Red 26 and 4-Chlorophenol," Applied Energy, Elsevier, vol. 120(C), pages 1-10.
    16. Chen, Guanyi & Tao, Junyu & Liu, Caixia & Yan, Beibei & Li, Wanqing & Li, Xiangping, 2017. "Hydrogen production via acetic acid steam reforming: A critical review on catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1091-1098.
    17. Ganesh, Ibram, 2015. "Solar fuels vis-à-vis electricity generation from sunlight: The current state-of-the-art (a review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 904-932.
    18. Wang, H.Z. & Leung, D.Y.C. & Leung, M.K.H. & Ni, M., 2009. "A review on hydrogen production using aluminum and aluminum alloys," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 845-853, May.
    19. Ozturk, Munir & Saba, Naheed & Altay, Volkan & Iqbal, Rizwan & Hakeem, Khalid Rehman & Jawaid, Mohammad & Ibrahim, Faridah Hanum, 2017. "Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1285-1302.
    20. Yang, Weijuan & Zhang, Tianyou & Liu, Jianzhong & Wang, Zhihua & Zhou, Junhu & Cen, Kefa, 2015. "Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature," Energy, Elsevier, vol. 93(P1), pages 451-457.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:1:p:524-533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.