IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v207y2025ics1364032124006749.html
   My bibliography  Save this article

Adaptive reactive power control for voltage rise mitigation on distribution network with high photovoltaic penetration

Author

Listed:
  • alwez, Mustafa Abo
  • Jasni, Jasronita
  • MohdRadzi, Mohd Amran
  • Azis, Norhafiz

Abstract

This research addresses the challenge of voltage rise on low voltage distribution networks with high photovoltaic penetration. The proliferation of distributed generators, particularly small-scale PV systems, has raised concerns about voltage stability and power quality in these networks. Existing reactive power control techniques, such as fixed power factor and voltage-based methods (Q(V)), have limitations in effectively mitigating voltage rise while considering load variations and network sensitivity. To overcome these limitations, an adaptive reactive power control technique is proposed in this research. The technique combines both PV active power injection and network voltage considerations in real-time to dynamically adjust reactive power output. Unlike traditional methods, which directly link reactive power reference to PV active power or voltage, the adaptive technique calculates the change in reactive power reference (ΔQ) based on both factors. This dynamic approach enables more responsive and accurate voltage regulation. The effectiveness of the adaptive technique is demonstrated through MATLAB simulations on a representative low voltage distribution network. The results show that the adaptive technique outperforms existing methods, providing better voltage regulation and reduced losses. The technique's adaptability to different scenarios and variations is also highlighted. However, it is noted that the adaptive technique may have a slightly slower response time compared to existing methods due to its dynamic nature.

Suggested Citation

  • alwez, Mustafa Abo & Jasni, Jasronita & MohdRadzi, Mohd Amran & Azis, Norhafiz, 2025. "Adaptive reactive power control for voltage rise mitigation on distribution network with high photovoltaic penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124006749
    DOI: 10.1016/j.rser.2024.114948
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124006749
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114948?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Soo-Bin Kim & Seung-Ho Song, 2020. "A Hybrid Reactive Power Control Method of Distributed Generation to Mitigate Voltage Rise in Low-Voltage Grid," Energies, MDPI, vol. 13(8), pages 1-15, April.
    2. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Stamford, Laurence & Azapagic, Adisa, 2020. "Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities," Applied Energy, Elsevier, vol. 258(C).
    3. Colmenar-Santos, Antonio & Reino-Rio, Cipriano & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1130-1148.
    4. Sunday Adeleke Salimon & Gafari Abiola Adepoju & Isaiah Gbadegesin Adebayo & Harun Or Rashid Howlader & Samson Oladayo Ayanlade & Oludamilare Bode Adewuyi, 2023. "Impact of Distributed Generators Penetration Level on the Power Loss and Voltage Profile of Radial Distribution Networks," Energies, MDPI, vol. 16(4), pages 1-32, February.
    5. Hasheminamin, Maryam & Agelidis, Vassilios Georgios & Ahmadi, Abdollah & Siano, Pierluigi & Teodorescu, Remus, 2018. "Single-point reactive power control method on voltage rise mitigation in residential networks with high PV penetration," Renewable Energy, Elsevier, vol. 119(C), pages 504-512.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodriguez, Mauricio & Arcos-Aviles, Diego & Guinjoan, Francesc, 2024. "Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador," Applied Energy, Elsevier, vol. 357(C).
    2. Ernest Igbineweka & Sunetra Chowdhury, 2024. "Application of Dual-Tree Complex Wavelet Transform in Islanding Detection for a Hybrid AC/DC Microgrid with Multiple Distributed Generators," Energies, MDPI, vol. 17(20), pages 1-33, October.
    3. Lemence, Allen Lemuel G. & Tamayao, Mili-Ann M., 2021. "Energy consumption profile estimation and benefits of hybrid solar energy system adoption for rural health units in the Philippines," Renewable Energy, Elsevier, vol. 178(C), pages 651-668.
    4. Jan K. Kazak & Joanna A. Kamińska & Rafał Madej & Marta Bochenkiewicz, 2020. "Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support," Energies, MDPI, vol. 13(21), pages 1-26, October.
    5. Pereira, Géssica Michelle dos Santos & Weigert, Gabriela Rosalee & Macedo, Pablo Lopes & Silva, Kiane Alves e & Segura Salas, Cresencio Silvio & Gonçalves, Antônio Maurício de Matos & Nascimento, Hebe, 2022. "Quasi-dynamic operation and maintenance plan for photovoltaic systems in remote areas: The framework of Pantanal-MS," Renewable Energy, Elsevier, vol. 181(C), pages 404-416.
    6. Solomon Kiros & Baseem Khan & Sanjeevikumar Padmanaban & Hassan Haes Alhelou & Zbigniew Leonowicz & Om Prakash Mahela & Jens Bo Holm-Nielsen, 2020. "Development of Stand-Alone Green Hybrid System for Rural Areas," Sustainability, MDPI, vol. 12(9), pages 1-14, May.
    7. Diahovchenko, Illia & Morva, György & Chuprun, Anastasiia & Keane, Andrew, 2025. "Comparison of voltage rise mitigation strategies for distribution networks with high photovoltaic penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    8. Abdul Munim Rehmani & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Muhammad Awais, 2023. "Techno-Economic-Environmental Assessment of an Isolated Rural Micro-Grid from a Mid-Career Repowering Perspective," Sustainability, MDPI, vol. 15(3), pages 1-35, January.
    9. Liang, Yuxiang & Li, Yong & Wang, Dengjia & Zhou, Huilin & Zhang, Qi & Liu, Yanfeng & Lei, Peng & Jing, Dengwei, 2025. "A framework for the design of a direct coupled photovoltaic heating system for remote areas," Renewable Energy, Elsevier, vol. 244(C).
    10. Odin Foldvik Eikeland & Filippo Maria Bianchi & Harry Apostoleris & Morten Hansen & Yu-Cheng Chiou & Matteo Chiesa, 2021. "Predicting Energy Demand in Semi-Remote Arctic Locations," Energies, MDPI, vol. 14(4), pages 1-17, February.
    11. Huijia Yang & Weiguang Fan & Guangyu Qin & Zhenyu Zhao, 2021. "A Fuzzy-ANP Approach for Comprehensive Benefit Evaluation of Grid-Side Commercial Storage Project," Energies, MDPI, vol. 14(4), pages 1-17, February.
    12. Zhang, Ying & Deng, Shuai & Ni, Jiaxin & Zhao, Li & Yang, Xingyang & Li, Minxia, 2017. "A literature research on feasible application of mixed working fluid in flexible distributed energy system," Energy, Elsevier, vol. 137(C), pages 377-390.
    13. Gianpiero Colangelo & Gianluigi Spirto & Marco Milanese & Arturo de Risi, 2021. "Progresses in Analytical Design of Distribution Grids and Energy Storage," Energies, MDPI, vol. 14(14), pages 1-43, July.
    14. Nusrat Chowdhury & Chowdhury Akram Hossain & Michela Longo & Wahiba Yaïci, 2018. "Optimization of Solar Energy System for the Electric Vehicle at University Campus in Dhaka, Bangladesh," Energies, MDPI, vol. 11(9), pages 1-10, September.
    15. Patrycja Walichnowska & Weronika Kruszelnicka & Andrzej Tomporowski & Adam Mroziński, 2025. "The Impact of Energy Storage on the Efficiency of Photovoltaic Systems and Determining the Carbon Footprint of Households with Different Electricity Sources," Sustainability, MDPI, vol. 17(6), pages 1-16, March.
    16. Tseng, Ming-Lang & Ardaniah, Viqi & Sujanto, Raditia Yudistira & Fujii, Minoru & Lim, Ming K., 2021. "Multicriteria assessment of renewable energy sources under uncertainty: Barriers to adoption," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    17. Gaspari, Michele & Lorenzoni, Arturo, 2018. "The governance for distributed energy resources in the Italian electricity market: A driver for innovation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3623-3632.
    18. Vale, A.M. & Felix, D.G. & Fortes, M.Z. & Borba, B.S.M.C. & Dias, B.H. & Santelli, B.S., 2017. "Analysis of the economic viability of a photovoltaic generation project applied to the Brazilian housing program “Minha Casa Minha Vida”," Energy Policy, Elsevier, vol. 108(C), pages 292-298.
    19. Adewuyi, Oludamilare Bode & Aki, Hirohisa, 2024. "Optimal planning for high renewable energy integration considering demand response, uncertainties, and operational performance flexibility," Energy, Elsevier, vol. 313(C).
    20. Ji, Ling & Liang, Xiaolin & Xie, Yulei & Huang, Guohe & Wang, Bing, 2021. "Optimal design and sensitivity analysis of the stand-alone hybrid energy system with PV and biomass-CHP for remote villages," Energy, Elsevier, vol. 225(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124006749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.