IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v186y2023ics1364032123005221.html
   My bibliography  Save this article

Analysing policy change towards the circular economy at the example of EU battery legislation

Author

Listed:
  • Barkhausen, Robin
  • Fick, Katharina
  • Durand, Antoine
  • Rohde, Clemens

Abstract

Batteries play an important role in the decarbonisation of road transport. By looking at the EU battery legislation from 1991 to 2022, policy change in the subsystem and its underlying drivers is analysed. The advocacy coalition framework is used, with a mixed methods approach combining qualitative document analysis and interviews. A strong increase in circular economy aspects is identified, going beyond the coverage of such aspects in other EU product regulations. Coalitions of industry actors and opposing NGOs are identified, but also a broadening of stakeholders involved and less accentuated boundaries between coalitions over time. Several external events were identified that are likely to have contributed to the alignment of economic and environmental interests towards a domestic and sustainable battery supply chain in the EU. Batteries can serve as a blueprint for other product groups, demonstrating that political and industrial momentum can be used to pursue ambitious environmental policies.

Suggested Citation

  • Barkhausen, Robin & Fick, Katharina & Durand, Antoine & Rohde, Clemens, 2023. "Analysing policy change towards the circular economy at the example of EU battery legislation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:rensus:v:186:y:2023:i:c:s1364032123005221
    DOI: 10.1016/j.rser.2023.113665
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123005221
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113665?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Joris Baars & Teresa Domenech & Raimund Bleischwitz & Hans Eric Melin & Oliver Heidrich, 2021. "Circular economy strategies for electric vehicle batteries reduce reliance on raw materials," Nature Sustainability, Nature, vol. 4(1), pages 71-79, January.
    2. James Morton Turner & Leah M. Nugent, 2016. "Charging up Battery Recycling Policies: Extended Producer Responsibility for Single-Use Batteries in the European Union, Canada, and the United States," Journal of Industrial Ecology, Yale University, vol. 20(5), pages 1148-1158, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Su & Yu Mei & Tongchao Liu & Khalil Amine, 2025. "Global Regulations for Sustainable Battery Recycling: Challenges and Opportunities," Sustainability, MDPI, vol. 17(7), pages 1-30, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Jianghong & Guo, Ping & Xu, Guangyi & Xu, Gangyan & Ning, Yu, 2024. "An integrated decision framework for resilient sustainable waste electric vehicle battery recycling transfer station site selection," Applied Energy, Elsevier, vol. 373(C).
    2. Idiano D'Adamo & Massimo Gastaldi & Ilhan Ozturk, 2023. "The sustainable development of mobility in the green transition: Renewable energy, local industrial chain, and battery recycling," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 840-852, April.
    3. Gutsch, Moritz & Leker, Jens, 2024. "Costs, carbon footprint, and environmental impacts of lithium-ion batteries – From cathode active material synthesis to cell manufacturing and recycling," Applied Energy, Elsevier, vol. 353(PB).
    4. Anthony L. Cheng & Erica R. H. Fuchs & Valerie J. Karplus & Jeremy J. Michalek, 2024. "Electric vehicle battery chemistry affects supply chain disruption vulnerabilities," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Idiano D’Adamo & Massimo Gastaldi & Jacopo Piccioni & Paolo Rosa, 2023. "The Role of Automotive Flexibility in Supporting the Diffusion of Sustainable Mobility Initiatives: A Stakeholder Attitudes Assessment," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(3), pages 459-481, September.
    6. Johannes Morfeldt & Daniel J. A. Johansson, 2022. "Impacts of shared mobility on vehicle lifetimes and on the carbon footprint of electric vehicles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Yue Ren & Xin Sun & Paul Wolfram & Shaoqiong Zhao & Xu Tang & Yifei Kang & Dongchang Zhao & Xinzhu Zheng, 2023. "Hidden delays of climate mitigation benefits in the race for electric vehicle deployment," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Yongyou Nie & Yuhan Wang & Lu Li & Haolan Liao, 2023. "Literature Review on Power Battery Echelon Reuse and Recycling from a Circular Economy Perspective," IJERPH, MDPI, vol. 20(5), pages 1-28, February.
    9. Marco Compagnoni & Marco Grazzi & Fabio Pieri & Chiara Tomasi, 2025. "Extended Producer Responsibility and Trade Flows in Waste: The Case of Batteries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 88(1), pages 43-76, January.
    10. Zhou, Xi-Yin & Xu, Zhicheng & Zheng, Jialin & Zhou, Ya & Lei, Kun & Fu, Jiafeng & Khu, Soon-Thiam & Yang, Junfeng, 2023. "Internal spillover effect of carbon emission between transportation sectors and electricity generation sectors," Renewable Energy, Elsevier, vol. 208(C), pages 356-366.
    11. Huang, Jianbai & Dong, Xuesong & Chen, Jinyu & Zeng, Anqi, 2023. "The slow-release effect of recycling on rapid demand growth of critical metals from EV batteries up to 2050: Evidence from China," Resources Policy, Elsevier, vol. 82(C).
    12. Song, Huiling & Wang, Chang & Sun, Kun & Geng, Hongjun & Zuo, Lyushui, 2023. "Material efficiency strategies across the industrial chain to secure indium availability for global carbon neutrality," Resources Policy, Elsevier, vol. 85(PB).
    13. Reza Toorajipour & Koteshwar Chirumalla & Glenn Johansson & Erik Dahlquist & Fredrik Wallin, 2024. "Implementing circular business models for the second‐life battery of electric vehicles: Challenges and enablers from an ecosystem perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 33(8), pages 8637-8655, December.
    14. Daniel Slunge & Francisco Alpizar, 2019. "Market-Based Instruments for Managing Hazardous Chemicals: A Review of the Literature and Future Research Agenda," Sustainability, MDPI, vol. 11(16), pages 1-20, August.
    15. Dan Su & Yu Mei & Tongchao Liu & Khalil Amine, 2025. "Global Regulations for Sustainable Battery Recycling: Challenges and Opportunities," Sustainability, MDPI, vol. 17(7), pages 1-30, March.
    16. Shengyu Tao & Ruifei Ma & Zixi Zhao & Guangyuan Ma & Lin Su & Heng Chang & Yuou Chen & Haizhou Liu & Zheng Liang & Tingwei Cao & Haocheng Ji & Zhiyuan Han & Minyan Lu & Huixiong Yang & Zongguo Wen & J, 2024. "Generative learning assisted state-of-health estimation for sustainable battery recycling with random retirement conditions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Zhu-Jun Wang & Zhen-Song Chen & Qin Su & Kwai-Sang Chin & Witold Pedrycz & Mirosław J. Skibniewski, 2024. "Enhancing the sustainability and robustness of critical material supply in electrical vehicle market: an AI-powered supplier selection approach," Annals of Operations Research, Springer, vol. 342(1), pages 921-958, November.
    18. Chunbo Zhang & Xiang Zhao & Romain Sacchi & Fengqi You, 2023. "Trade-off between critical metal requirement and transportation decarbonization in automotive electrification," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. Liu, Wei & Li, Xin & Liu, Chunyan & Wang, Minxi & Liu, Litao, 2023. "Resilience assessment of the cobalt supply chain in China under the impact of electric vehicles and geopolitical supply risks," Resources Policy, Elsevier, vol. 80(C).
    20. Leopold Peiseler & Vanessa Schenker & Karin Schatzmann & Stephan Pfister & Vanessa Wood & Tobias Schmidt, 2024. "Carbon footprint distributions of lithium-ion batteries and their materials," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:186:y:2023:i:c:s1364032123005221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.