IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i2p1250-1257.html
   My bibliography  Save this article

Overview of the state of technique for PV inverters used in low voltage grid-connected PV systems: Inverters above 10Â kW

Author

Listed:
  • Salas, V.
  • Olías, E.

Abstract

An analysis has been made of the most important electrical parameters related to photovoltaic grid-connected inverters above 10Â kW. To achieve this, a compilation of up to fifty manufacturers, various brands and up to five hundred different models has been prepared and updated to February 2009. Datasheet and manuals have been compiled, noting down their electrical output and input characteristics. Different and important aspects with respect to performance of some PV grid-installation have been analyzed: the number of different models for values of power; topology option; operational DC parameters range (such as nominal power, maximum power, nominal current, voltage), operational AC parameter range (such as nominal power, maximum power, nominal current, voltage), inverter conversion efficiency vs. nominal power and normalised inverter size and weight.

Suggested Citation

  • Salas, V. & Olías, E., 2011. "Overview of the state of technique for PV inverters used in low voltage grid-connected PV systems: Inverters above 10Â kW," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1250-1257, February.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:2:p:1250-1257
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00338-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salas, V. & Olías, E., 2009. "Overview of the state of technique for PV inverters used in low voltage grid-connected PV systems: Inverters below 10Â kW," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1541-1550, August.
    2. Salas, V. & Olias, E., 2009. "Overview of the photovoltaic technology status and perspective in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1049-1057, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Demand side management in microgrid: A critical review of key issues and recent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Patil, Vikas R. & Biradar, Vijay Irappa & Shreyas, R. & Garg, Pardeep & Orosz, Matthew S. & Thirumalai, N.C., 2017. "Techno-economic comparison of solar organic Rankine cycle (ORC) and photovoltaic (PV) systems with energy storage," Renewable Energy, Elsevier, vol. 113(C), pages 1250-1260.
    3. Muñoz, J.V. & Nofuentes, G. & Fuentes, M. & de la Casa, J. & Aguilera, J., 2016. "DC energy yield prediction in large monocrystalline and polycrystalline PV plants: Time-domain integration of Osterwald's model," Energy, Elsevier, vol. 114(C), pages 951-960.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jana, Joydip & Saha, Hiranmay & Das Bhattacharya, Konika, 2017. "A review of inverter topologies for single-phase grid-connected photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1256-1270.
    2. Movilla, Santiago & Miguel, Luis J. & Blázquez, L. Felipe, 2013. "A system dynamics approach for the photovoltaic energy market in Spain¤," Energy Policy, Elsevier, vol. 60(C), pages 142-154.
    3. Sergio Coronas & Jordi de la Hoz & Àlex Alonso & Helena Martín, 2022. "23 Years of Development of the Solar Power Generation Sector in Spain: A Comprehensive Review of the Period 1998–2020 from a Regulatory Perspective," Energies, MDPI, vol. 15(4), pages 1-53, February.
    4. Mirhassani, SeyedMohsen & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2015. "Advances and challenges in grid tied photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 121-131.
    5. Salas, V. & Suponthana, W. & Salas, R.A., 2015. "Overview of the off-grid photovoltaic diesel batteries systems with AC loads," Applied Energy, Elsevier, vol. 157(C), pages 195-216.
    6. Rampinelli, Giuliano A. & Gasparin, Fabiano P. & Bühler, Alexandre J. & Krenzinger, Arno & Chenlo Romero, Faustino, 2015. "Assessment and mathematical modeling of energy quality parameters of grid connected photovoltaic inverters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 133-141.
    7. Heras-Saizarbitoria, Iñaki & Cilleruelo, Ernesto & Zamanillo, Ibon, 2011. "Public acceptance of renewables and the media: an analysis of the Spanish PV solar experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4685-4696.
    8. Dasí-Crespo, Daniel & Roldán-Blay, Carlos & Escrivá-Escrivá, Guillermo & Roldán-Porta, Carlos, 2023. "Evaluation of the Spanish regulation on self-consumption photovoltaic installations. A case study based on a rural municipality in Spain," Renewable Energy, Elsevier, vol. 204(C), pages 788-802.
    9. Hassaine, L. & OLias, E. & Quintero, J. & Salas, V., 2014. "Overview of power inverter topologies and control structures for grid connected photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 796-807.
    10. Tomar, Vivek & Tiwari, G.N., 2017. "Techno-economic evaluation of grid connected PV system for households with feed in tariff and time of day tariff regulation in New Delhi – A sustainable approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 822-835.
    11. Rampinelli, G.A. & Krenzinger, A. & Chenlo Romero, F., 2014. "Mathematical models for efficiency of inverters used in grid connected photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 578-587.
    12. Taghvaee, M.H. & Radzi, M.A.M. & Moosavain, S.M. & Hizam, Hashim & Hamiruce Marhaban, M., 2013. "A current and future study on non-isolated DC–DC converters for photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 216-227.
    13. Islam, Monirul & Mekhilef, Saad & Hasan, Mahamudul, 2015. "Single phase transformerless inverter topologies for grid-tied photovoltaic system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 69-86.
    14. Pérez-Alonso, J. & Pérez-García, M. & Pasamontes-Romera, M. & Callejón-Ferre, A.J., 2012. "Performance analysis and neural modelling of a greenhouse integrated photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4675-4685.
    15. Muñoz, J.V. & Nofuentes, G. & Fuentes, M. & de la Casa, J. & Aguilera, J., 2016. "DC energy yield prediction in large monocrystalline and polycrystalline PV plants: Time-domain integration of Osterwald's model," Energy, Elsevier, vol. 114(C), pages 951-960.
    16. Tareen, Wajahat Ullah & Mekhilef, Saad & Seyedmahmoudian, Mehdi & Horan, Ben, 2017. "Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 635-655.
    17. Aragonés-Beltrán, P. & Chaparro-González, F. & Pastor-Ferrando, J.P. & Rodríguez-Pozo, F., 2010. "An ANP-based approach for the selection of photovoltaic solar power plant investment projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 249-264, January.
    18. Matthias Brachert & Christoph Hornych, 2011. "Entrepreneurial Opportunity and the Formation of the Photovoltaic Industry in Eastern Germany," ERSA conference papers ersa10p1460, European Regional Science Association.
    19. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza & Hashim, Haslenda, 2011. "Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 574-583, January.
    20. Lee, Chung-Jui & Lin, Jen-Fin, 2012. "High-efficiency concentrated optical module," Energy, Elsevier, vol. 44(1), pages 593-603.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:2:p:1250-1257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.