IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v157y2022ics1364032121013113.html
   My bibliography  Save this article

What can we learn from the experience of European countries in biomethane industry: Taking China as an example?

Author

Listed:
  • Xue, Shengrong
  • Zhang, Siqi
  • Wang, Ying
  • Wang, Yanbo
  • Song, Jinghui
  • Lyu, Xingang
  • Wang, Xiaojiao
  • Yang, Gaihe

Abstract

The heart of biogas industry is on, with going on transformation and upgrading. Upgraded biogas, namely biomethane, is a low-carbon, clean, safe and efficient renewable energy, which very often has been neglected in energy debate. However, it shows great contributions to promoting the transformation and upgrading of energy structure and energy security, building an ecological civilization, etc. The successful business cases in Europe have displayed many reasons to keep developing this sector. Hence, taking China as an example, this work aims to benefit the government and energy transition stakeholders more broadly in working together to enable and manage successful biogas industry transition with the experience of European countries. This includes how policymakers can help to guarantee the healthy development of biomethane industry, and what the government and companies can do to boost the market, economy and technology of biomethane. The ultimate target is to prosper the world's biomethane industry to meet people's ever-growing demands for a better life and a beautiful environment.

Suggested Citation

  • Xue, Shengrong & Zhang, Siqi & Wang, Ying & Wang, Yanbo & Song, Jinghui & Lyu, Xingang & Wang, Xiaojiao & Yang, Gaihe, 2022. "What can we learn from the experience of European countries in biomethane industry: Taking China as an example?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:rensus:v:157:y:2022:i:c:s1364032121013113
    DOI: 10.1016/j.rser.2021.112049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121013113
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.112049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saadabadi, S. Ali & Thallam Thattai, Aditya & Fan, Liyuan & Lindeboom, Ralph E.F. & Spanjers, Henri & Aravind, P.V., 2019. "Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints," Renewable Energy, Elsevier, vol. 134(C), pages 194-214.
    2. Gao, Mingxue & Wang, Danmeng & Wang, Hui & Wang, Xiaojiao & Feng, Yongzhong, 2019. "Biogas potential, utilization and countermeasures in agricultural provinces: A case study of biogas development in Henan Province, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 191-200.
    3. Kuznetsova, Elizaveta & Cardin, Michel-Alexandre & Diao, Mingzhen & Zhang, Sizhe, 2019. "Integrated decision-support methodology for combined centralized-decentralized waste-to-energy management systems design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 477-500.
    4. Gu, Lei & Zhang, Yi-Xin & Wang, Jian-Zhou & Chen, Gina & Battye, Hugh, 2016. "Where is the future of China’s biogas? Review, forecast, and policy implications," LSE Research Online Documents on Economics 67274, London School of Economics and Political Science, LSE Library.
    5. Chen, Qiu & Liu, Tianbiao, 2017. "Biogas system in rural China: Upgrading from decentralized to centralized?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 933-944.
    6. Scarlat, Nicolae & Dallemand, Jean-François & Fahl, Fernando, 2018. "Biogas: Developments and perspectives in Europe," Renewable Energy, Elsevier, vol. 129(PA), pages 457-472.
    7. Herbes, Carsten & Rilling, Benedikt & Ringel, Marc, 2021. "Policy frameworks and voluntary markets for biomethane – How do different policies influence providers’ product strategies?," Energy Policy, Elsevier, vol. 153(C).
    8. Horschig, Thomas & Adams, Paul W.R. & Röder, Mirjam & Thornley, Patricia & Thrän, Daniela, 2016. "Reasonable potential for GHG savings by anaerobic biomethane in Germany and UK derived from economic and ecological analyses," Applied Energy, Elsevier, vol. 184(C), pages 840-852.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Idiano D’Adamo & Claudio Sassanelli, 2022. "Biomethane Community: A Research Agenda towards Sustainability," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    2. Bai, Dongbei & Jain, Vipin & Tripathi, Mamta & Ali, Syed Ahtsham & Shabbir, Malik Shahzad & Mohamed, Mady A.A. & Ramos-Meza, Carlos Samuel, 2022. "Performance of biogas plant analysis and policy implications: Evidence from the commercial sources," Energy Policy, Elsevier, vol. 169(C).
    3. Felipe Solferini de Carvalho & Luiz Carlos Bevilaqua dos Santos Reis & Pedro Teixeira Lacava & Fernando Henrique Mayworm de Araújo & João Andrade de Carvalho Jr., 2023. "Substitution of Natural Gas by Biomethane: Operational Aspects in Industrial Equipment," Energies, MDPI, vol. 16(2), pages 1-19, January.
    4. Ramanauske, Neringa & Balezentis, Tomas & Streimikiene, Dalia, 2023. "Biomass use and its implications for bioeconomy development: A resource efficiency perspective for the European countries," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    5. Yanbo Wang & Boyao Zhi & Shumin Xiang & Guangxin Ren & Yongzhong Feng & Gaihe Yang & Xiaojiao Wang, 2023. "China’s Biogas Industry’s Sustainable Transition to a Low-Carbon Plan—A Socio-Technical Perspective," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    6. Catalano, Giovanni & D'Adamo, Idiano & Gastaldi, Massimo & Nizami, Abdul-Sattar & Ribichini, Marco, 2024. "Incentive policies in biomethane production toward circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    7. Alberto Benato & Chiara D’Alpaos & Alarico Macor, 2022. "Possible Ways of Extending the Biogas Plants Lifespan after the Feed-In Tariff Expiration," Energies, MDPI, vol. 15(21), pages 1-23, October.
    8. Xu, Xin & An, Haizhong & Huang, Shupei & Jia, Nanfei & Qi, Yajie, 2024. "Measurement of daily climate physical risks and climate transition risks faced by China's energy sector stocks," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 625-640.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    2. Liu, Hongzhao & Wang, Yuzhang & Yu, Tao & Liu, Hecong & Cai, Weiwei & Weng, Shilie, 2020. "Effect of carbon dioxide content in biogas on turbulent combustion in the combustor of micro gas turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 1299-1311.
    3. Xue, Shengrong & Song, Jinghui & Wang, Xiaojiao & Shang, Zezhou & Sheng, Chenjing & Li, Chongyuan & Zhu, Yufan & Liu, Jingyu, 2020. "A systematic comparison of biogas development and related policies between China and Europe and corresponding insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    4. Luo, Tao & Khoshnevisan, Benyamin & Huang, Ruyi & Chen, Qiu & Mei, Zili & Pan, Junting & Liu, Hongbin, 2020. "Analysis of revolution in decentralized biogas facilities caused by transition in Chinese rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Calbry-Muzyka, Adelaide & Tarik, Mohamed & Gandiglio, Marta & Li, Jianrong & Foppiano, Debora & de Krom, Iris & Heikens, Dita & Ludwig, Christian & Biollaz, Serge, 2021. "Sampling, on-line and off-line measurement of organic silicon compounds at an industrial biogas-fed 175-kWe SOFC plant," Renewable Energy, Elsevier, vol. 177(C), pages 61-71.
    6. Roozbeh Feiz & Jonas Ammenberg & Annika Björn & Yufang Guo & Magnus Karlsson & Yonghui Liu & Yuxian Liu & Laura Shizue Moriga Masuda & Alex Enrich-Prast & Harald Rohracher & Kristina Trygg & Sepehr Sh, 2019. "Biogas Potential for Improved Sustainability in Guangzhou, China—A Study Focusing on Food Waste on Xiaoguwei Island," Sustainability, MDPI, vol. 11(6), pages 1-25, March.
    7. Wang, Xuemei & Yan, Rui & Zhao, Yuying & Cheng, Shikun & Han, Yanzhao & Yang, Shuo & Cai, Di & Mang, Heinz-Peter & Li, Zifu, 2020. "Biogas standard system in China," Renewable Energy, Elsevier, vol. 157(C), pages 1265-1273.
    8. Christopher Schmid & Thomas Horschig & Alexandra Pfeiffer & Nora Szarka & Daniela Thrän, 2019. "Biogas Upgrading: A Review of National Biomethane Strategies and Support Policies in Selected Countries," Energies, MDPI, vol. 12(19), pages 1-24, October.
    9. Kasinath, Archana & Fudala-Ksiazek, Sylwia & Szopinska, Malgorzata & Bylinski, Hubert & Artichowicz, Wojciech & Remiszewska-Skwarek, Anna & Luczkiewicz, Aneta, 2021. "Biomass in biogas production: Pretreatment and codigestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Josipa Pavičić & Karolina Novak Mavar & Vladislav Brkić & Katarina Simon, 2022. "Biogas and Biomethane Production and Usage: Technology Development, Advantages and Challenges in Europe," Energies, MDPI, vol. 15(8), pages 1-28, April.
    11. Rilling, Benedikt & Kurz, Peter & Herbes, Carsten, 2024. "Renewable gases in the heating market: Identifying consumer preferences through a Discrete Choice Experiment," Energy Policy, Elsevier, vol. 184(C).
    12. Andante Hadi Pandyaswargo & Premakumara Jagath Dickella Gamaralalage & Chen Liu & Michael Knaus & Hiroshi Onoda & Faezeh Mahichi & Yanghui Guo, 2019. "Challenges and an Implementation Framework for Sustainable Municipal Organic Waste Management Using Biogas Technology in Emerging Asian Countries," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    13. Mac Clay, Pablo & Börner, Jan & Sellare, Jorge, 2023. "Institutional and macroeconomic stability mediate the effect of auctions on renewable energy capacity," Energy Policy, Elsevier, vol. 180(C).
    14. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Zhao, Xiqiang & Zhou, Xing & Wang, Guoxiu & Zhou, Ping & Wang, Wenlong & Song, Zhanlong, 2022. "Evaluating the effect of torrefaction on the pyrolysis of biomass and the biochar catalytic performance on dry reforming of methane," Renewable Energy, Elsevier, vol. 192(C), pages 313-325.
    16. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Fernandez, Helen Coarita & Buffiere, Pierre & Bayard, Rémy, 2022. "Understanding the role of mechanical pretreatment before anaerobic digestion: Lab-scale investigations," Renewable Energy, Elsevier, vol. 187(C), pages 193-203.
    18. Dumitru Peni & Marcin Dębowski & Mariusz Jerzy Stolarski, 2022. "Influence of the Fertilization Method on the Silphium perfoliatum Biomass Composition and Methane Fermentation Efficiency," Energies, MDPI, vol. 15(3), pages 1-13, January.
    19. Maktabifard, Mojtaba & Al-Hazmi, Hussein E. & Szulc, Paulina & Mousavizadegan, Mohammad & Xu, Xianbao & Zaborowska, Ewa & Li, Xiang & Mąkinia, Jacek, 2023. "Net-zero carbon condition in wastewater treatment plants: A systematic review of mitigation strategies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    20. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:157:y:2022:i:c:s1364032121013113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.