IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v157y2022ics1364032121012727.html
   My bibliography  Save this article

Comprehensive evaluation of electricity generation and emission reduction potential in the power sector using renewable alternatives in Vietnam

Author

Listed:
  • Roy, S.
  • Lam, Y.F.
  • Hossain, M.U.
  • Chan, J.C.L.

Abstract

The electricity generation in developing countries is primarily fossil fuel-oriented, leading to substantial air and greenhouse gas (GHG) emissions. It is projected that Vietnam's GHG emissions will be increased significantly by 2030 due to heavy reliance on fossil fuel-fired power plants in rapid economic development. This study projected and evaluated the benefits of adopting green and renewable sources (i.e., municipal solid wastes (MSW) and solar power) in terms of its electricity generation and emission reduction (in CO2e) in 2030. The Life cycle assessment (LCA) was adopted to investigate the potential emission reduction per unit of electricity generation (kg CO2e/ kWh) from the waste-to-electricity process under different operational conditions (i.e., collection, operation, and disposal). The results show that for future solar power generation, 9557 GWh of electricity with 8219 Gg CO2e of GHG emission saving was projected in 2030 under the average estimation scenario, while for waste-to-electricity, 12,991 GWh of electricity with 4910.5 Gg CO2e saving was projected. Overall, the results illustrate appreciable GHG emission savings from adopting green and renewable energy practices. It sets out a good example for developing countries who are seeking ways of curbing their growing GHG emissions to combat global climate change. It should be aware that although a considerable emission reduction in the thermal power sector is anticipated through adopting renewable and green alternatives, it is still important for the Vietnam government to limit or stop the growth of fossil fuel-fired power plants (especially for coal-fired) for the future environmental sustainability.

Suggested Citation

  • Roy, S. & Lam, Y.F. & Hossain, M.U. & Chan, J.C.L., 2022. "Comprehensive evaluation of electricity generation and emission reduction potential in the power sector using renewable alternatives in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:rensus:v:157:y:2022:i:c:s1364032121012727
    DOI: 10.1016/j.rser.2021.112009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121012727
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.112009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nguyen, Phuong Anh & Abbott, Malcolm & Nguyen, Thanh Loan T., 2019. "The development and cost of renewable energy resources in Vietnam," Utilities Policy, Elsevier, vol. 57(C), pages 59-66.
    2. Mondal, Md. Alam Hossain & Denich, Manfred & Vlek, Paul L.G., 2010. "The future choice of technologies and co-benefits of CO2 emission reduction in Bangladesh power sector," Energy, Elsevier, vol. 35(12), pages 4902-4909.
    3. Lee, Zhi Hua & Sethupathi, Sumathi & Lee, Keat Teong & Bhatia, Subhash & Mohamed, Abdul Rahman, 2013. "An overview on global warming in Southeast Asia: CO2 emission status, efforts done, and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 71-81.
    4. Alexander Maennel & Hyun-Goo Kim, 2018. "Comparison of Greenhouse Gas Reduction Potential through Renewable Energy Transition in South Korea and Germany," Energies, MDPI, vol. 11(1), pages 1-12, January.
    5. Melikoglu, Mehmet, 2013. "Vision 2023: Assessing the feasibility of electricity and biogas production from municipal solid waste in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 52-63.
    6. Tsai, Wen-Tien & Kuo, Kuan-Chi, 2010. "An analysis of power generation from municipal solid waste (MSW) incineration plants in Taiwan," Energy, Elsevier, vol. 35(12), pages 4824-4830.
    7. Zhou, Kaile & Yang, Shanlin & Shen, Chao & Ding, Shuai & Sun, Chaoping, 2015. "Energy conservation and emission reduction of China’s electric power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 10-19.
    8. Paul E. Hardisty & Tom S. Clark & Robert G. Hynes, 2012. "Life Cycle Greenhouse Gas Emissions from Electricity Generation: A Comparative Analysis of Australian Energy Sources," Energies, MDPI, vol. 5(4), pages 1-26, March.
    9. Jäger-Waldau, Arnulf & Kougias, Ioannis & Taylor, Nigel & Thiel, Christian, 2020. "How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    10. Eleonora Riva Sanseverino & Hang Le Thi Thuy & Manh-Hai Pham & Maria Luisa Di Silvestre & Ninh Nguyen Quang & Salvatore Favuzza, 2020. "Review of Potential and Actual Penetration of Solar Power in Vietnam," Energies, MDPI, vol. 13(10), pages 1-25, May.
    11. Kumar, Subhash & Madlener, Reinhard, 2016. "CO2 emission reduction potential assessment using renewable energy in India," Energy, Elsevier, vol. 97(C), pages 273-282.
    12. Rajaeifar, Mohammad Ali & Ghanavati, Hossein & Dashti, Behrouz B. & Heijungs, Reinout & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2017. "Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 414-439.
    13. Jun Zhao & Kun Yang, 2020. "Allocating Output Electricity in a Solar-Aided Coal-Fired Power Generation System and Assessing Its CO 2 Emission Reductions in China," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    14. Tan, Sie Ting & Hashim, Haslenda & Lim, Jeng Shiun & Ho, Wai Shin & Lee, Chew Tin & Yan, Jinyue, 2014. "Energy and emissions benefits of renewable energy derived from municipal solid waste: Analysis of a low carbon scenario in Malaysia," Applied Energy, Elsevier, vol. 136(C), pages 797-804.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Chien-Chiang & Hussain, Jafar & Mu, Xian, 2024. "Renewable energy and carbon-neutral gaming: A holistic approach to sustainable electricity," Energy, Elsevier, vol. 297(C).
    2. Li, Yi & Liu, Tianya & Xu, Jinpeng, 2023. "Analyzing the economic, social, and technological determinants of renewable and nonrenewable electricity production in China: Findings from time series models," Energy, Elsevier, vol. 282(C).
    3. Kheiralipour, Kamran & Khoobbakht, Mohammad & Karimi, Mahmoud, 2024. "Effect of biodiesel on environmental impacts of diesel mechanical power generation by life cycle assessment," Energy, Elsevier, vol. 289(C).
    4. Yashuang Feng & Lixiao Zhang, 2023. "The GHG Intensities of Wind Power Plants in China from a Life-Cycle Perspective: The Impacts of Geographical Location, Turbine Technology and Management Level," Sustainability, MDPI, vol. 15(5), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dehkordi, Seyed Mohammad Mehdi Noorbakhsh & Jahromi, Ahmad Reza Taghipour & Ferdowsi, Ali & Shumal, Mohammad & Dehnavi, Ali, 2020. "Investigation of biogas production potential from mechanical separated municipal solid waste as an approach for developing countries (case study: Isfahan-Iran)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Xin-gang, Zhao & Gui-wu, Jiang & Ang, Li & Yun, Li, 2016. "Technology, cost, a performance of waste-to-energy incineration industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 115-130.
    3. Imaduddin Abdullah & Dallih Warviyan & Rika Safrina & Nuki Agya Utama & Andy Tirta & Ibham Veza & Irianto Irianto, 2023. "Green Fiscal Stimulus in Indonesia and Vietnam: A Reality Check of Two Emerging Economies," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
    4. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    5. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    6. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    7. Pirotta, F.J.C. & Ferreira, E.C. & Bernardo, C.A., 2013. "Energy recovery and impact on land use of Maltese municipal solid waste incineration," Energy, Elsevier, vol. 49(C), pages 1-11.
    8. Majumder, Suman & De, Krishnarti & Kumar, Praveen & Sengupta, Bodhisattva & Biswas, Pabitra Kumar, 2021. "Techno-commercial analysis of sustainable E-bus-based public transit systems: An Indian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Junlakarn, Siripha & Kittner, Noah & Tongsopit, Sopitsuda & Saelim, Supawan, 2021. "A cross-country comparison of compensation mechanisms for distributed photovoltaics in the Philippines, Thailand, and Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    11. Maren Helen Meyer & Sandra Dullau & Pascal Scholz & Markus Andreas Meyer & Sabine Tischew, 2023. "Bee-Friendly Native Seed Mixtures for the Greening of Solar Parks," Land, MDPI, vol. 12(6), pages 1-16, June.
    12. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "Environmental Kuznets Curve of greenhouse gas emissions including technological progress and substitution effects," Energy, Elsevier, vol. 135(C), pages 237-248.
    13. Singh, Deval & Tembhare, Mamta & Machhirake, Nitesh & Kumar, Sunil, 2023. "Biogas generation potential of discarded food waste residue from ultra-processing activities at food manufacturing and packaging industry," Energy, Elsevier, vol. 263(PE).
    14. Li, Wei & Gao, Shubin, 2018. "Prospective on energy related carbon emissions peak integrating optimized intelligent algorithm with dry process technique application for China's cement industry," Energy, Elsevier, vol. 165(PB), pages 33-54.
    15. Botakoz Suleimenova & Berik Aimbetov & Daulet Zhakupov & Dhawal Shah & Yerbol Sarbassov, 2022. "Co-Firing of Refuse-Derived Fuel with Ekibastuz Coal in a Bubbling Fluidized Bed Reactor: Analysis of Emissions and Ash Characteristics," Energies, MDPI, vol. 15(16), pages 1-11, August.
    16. Wang, Zhen & Wei, Liyuan & Niu, Beibei & Liu, Yong & Bin, Guoshu, 2017. "Controlling embedded carbon emissions of sectors along the supply chains: A perspective of the power-of-pull approach," Applied Energy, Elsevier, vol. 206(C), pages 1544-1551.
    17. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    18. Norasikin Ahmad Ludin & Nurfarhana Alyssa Ahmad Affandi & Kathleen Purvis-Roberts & Azah Ahmad & Mohd Adib Ibrahim & Kamaruzzaman Sopian & Sufian Jusoh, 2021. "Environmental Impact and Levelised Cost of Energy Analysis of Solar Photovoltaic Systems in Selected Asia Pacific Region: A Cradle-to-Grave Approach," Sustainability, MDPI, vol. 13(1), pages 1-21, January.
    19. Piotr Olczak & Małgorzata Olek & Dominika Matuszewska & Artur Dyczko & Tomasz Mania, 2021. "Monofacial and Bifacial Micro PV Installation as Element of Energy Transition—The Case of Poland," Energies, MDPI, vol. 14(2), pages 1-22, January.
    20. Tsai, Wen-Tien, 2011. "An analysis of used lubricant recycling, energy utilization and its environmental benefit in Taiwan," Energy, Elsevier, vol. 36(7), pages 4333-4339.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:157:y:2022:i:c:s1364032121012727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.