IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v14y2010i7p2077-2085.html
   My bibliography  Save this article

Comparative environmental performance of lignocellulosic ethanol from different feedstocks

Author

Listed:
  • González-García, Sara
  • Moreira, M. Teresa
  • Feijoo, Gumersindo

Abstract

A renewable biofuel economy is projected as a pathway to decrease dependence on fossil fuels as well as to reduce greenhouse gases (GHG) emissions. Ethanol produced on large-scale from lignocellulosic raw materials is considered the most potential next generation automotive fuel. In this paper, a Life Cycle Assessment model was developed to evaluate the environmental implications of the production of ethanol from five lignocellulosic materials: alfalfa stems, poplar, Ethiopian mustard, flax shives and hemp hurds and its use in passenger cars. Two ethanol-based fuel applications, E10 (a mixture of 10% ethanol and 90% gasoline by volume) and E85 (85% ethanol and 15% gasoline by volume) were assessed and the results were compared to those of conventional gasoline (CG) in an equivalent car. The environmental performance was assessed in terms of fossil fuels requirements, global warming, photochemical oxidant formation, acidification and eutrophication by means of the Life Cycle Assessment (LCA) methodology in order to identify the best environmental friendly lignocellulosic source. The results show that, compared to CG, life cycle greenhouse gases emissions are lower for etanol blends, specifically up to 145% lower for E85-fueled car derived from Ethiopian mustard. This crop is also the best option in terms of eutrophying emissions regardless the ratio of ethanol in the blend. In the remaining impact categories, other feedstocks are considered beneficial, that is, poplar in the case of photochemical oxidants formation and flax shives for acidification. Concerning fossil fuels requirements, decreases up to 10% and 63% for E10 and E85 derived from hemp hurds and Ethiopian mustard, respectively, were obtained. According to the results, the study clearly demonstrates the importance of using low intensive energy and high biomass yield crops. LCA procedure helps to identify the key areas in the ethanol production life cycle where the researchers and technicians need to work to improve the environmental performance. Technological development could help in lowering both the environmental impact and the prices of the ethanol fuels.

Suggested Citation

  • González-García, Sara & Moreira, M. Teresa & Feijoo, Gumersindo, 2010. "Comparative environmental performance of lignocellulosic ethanol from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2077-2085, September.
  • Handle: RePEc:eee:rensus:v:14:y:2010:i:7:p:2077-2085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00097-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González-García, Sara & Gasol, Carles M. & Gabarrell, Xavier & Rieradevall, Joan & Moreira, Mª Teresa & Feijoo, Gumersindo, 2009. "Environmental aspects of ethanol-based fuels from Brassica carinata: A case study of second generation ethanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2613-2620, December.
    2. Luo, Lin & van der Voet, Ester & Huppes, Gjalt, 2009. "An energy analysis of ethanol from cellulosic feedstock-Corn stover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2003-2011, October.
    3. Ryan, Lisa & Convery, Frank & Ferreira, Susana, 2006. "Stimulating the use of biofuels in the European Union: Implications for climate change policy," Energy Policy, Elsevier, vol. 34(17), pages 3184-3194, November.
    4. Najafi, G. & Ghobadian, B. & Tavakoli, T. & Yusaf, T., 2009. "Potential of bioethanol production from agricultural wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1418-1427, August.
    5. González-García, Sara & Luo, Lin & Moreira, Mª Teresa & Feijoo, Gumersindo & Huppes, Gjalt, 2009. "Life cycle assessment of flax shives derived second generation ethanol fueled automobiles in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1922-1933, October.
    6. Y. Lechon & H. Cabal & R. Saez, 2005. "Life cycle analysis of wheat and barley crops for bioethanol production in Spain," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 4(2), pages 113-122.
    7. Nguyen, Thu Lan T. & Gheewala, Shabbir H., 2008. "Fuel ethanol from cane molasses in Thailand: Environmental and cost performance," Energy Policy, Elsevier, vol. 36(5), pages 1589-1599, May.
    8. Nguyen, Thu Lan T. & Gheewala, Shabbir H. & Garivait, Savitri, 2007. "Fossil energy savings and GHG mitigation potentials of ethanol as a gasoline substitute in Thailand," Energy Policy, Elsevier, vol. 35(10), pages 5195-5205, October.
    9. Tan, Kok Tat & Lee, Keat Teong & Mohamed, Abdul Rahman, 2008. "Role of energy policy in renewable energy accomplishment: The case of second-generation bioethanol," Energy Policy, Elsevier, vol. 36(9), pages 3360-3365, September.
    10. Luo, Lin & van der Voet, Ester & Huppes, Gjalt, 2009. "Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1613-1619, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morales, Marjorie & Quintero, Julián & Conejeros, Raúl & Aroca, Germán, 2015. "Life cycle assessment of lignocellulosic bioethanol: Environmental impacts and energy balance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1349-1361.
    2. Renó, Maria Luiza Grillo & Lora, Electo Eduardo Silva & Palacio, José Carlos Escobar & Venturini, Osvaldo José & Buchgeister, Jens & Almazan, Oscar, 2011. "A LCA (life cycle assessment) of the methanol production from sugarcane bagasse," Energy, Elsevier, vol. 36(6), pages 3716-3726.
    3. Zheng, Ji-Lu & Zhu, Ya-Hong & Su, Hong-Yu & Sun, Guo-Tao & Kang, Fu-Ren & Zhu, Ming-Qiang, 2022. "Life cycle assessment and techno-economic analysis of fuel ethanol production via bio-oil fermentation based on a centralized-distribution model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Fiorentino, Gabriella & Zucaro, Amalia & Ulgiati, Sergio, 2019. "Towards an energy efficient chemistry. Switching from fossil to bio-based products in a life cycle perspective," Energy, Elsevier, vol. 170(C), pages 720-729.
    5. Saba, N. & Jawaid, M. & Hakeem, K.R. & Paridah, M.T. & Khalina, A. & Alothman, O.Y., 2015. "Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 446-459.
    6. Wiloso, Edi Iswanto & Heijungs, Reinout & de Snoo, Geert R., 2012. "LCA of second generation bioethanol: A review and some issues to be resolved for good LCA practice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5295-5308.
    7. Bensah, Edem Cudjoe & Kemausuor, Francis & Miezah, Kodwo & Kádár, Zsófia & Mensah, Moses, 2015. "African perspective on cellulosic ethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1-11.
    8. Ribeiro, Barbara E. & Quintanilla, Miguel A., 2015. "Transitions in biofuel technologies: An appraisal of the social impacts of cellulosic ethanol using the Delphi method," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 53-68.
    9. Rehman, Muhammad Saif Ur & Rashid, Naim & Saif, Ameena & Mahmood, Tariq & Han, Jong-In, 2013. "Potential of bioenergy production from industrial hemp (Cannabis sativa): Pakistan perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 154-164.
    10. McKechnie, Jon & Pourbafrani, Mohammad & Saville, Bradley A. & MacLean, Heather L., 2015. "Exploring impacts of process technology development and regional factors on life cycle greenhouse gas emissions of corn stover ethanol," Renewable Energy, Elsevier, vol. 76(C), pages 726-734.
    11. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    12. Forte, Annachiara & Zucaro, Amalia & Faugno, Salvatore & Basosi, Riccardo & Fierro, Angelo, 2018. "Carbon footprint and fossil energy consumption of bio-ethanol fuel production from Arundo donax L. crops on marginal lands of Southern Italy," Energy, Elsevier, vol. 150(C), pages 222-235.
    13. Borrion, Aiduan Li & McManus, Marcelle C. & Hammond, Geoffrey P., 2012. "Environmental life cycle assessment of lignocellulosic conversion to ethanol: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4638-4650.
    14. Tahereh Soleymani Angili & Katarzyna Grzesik & Anne Rödl & Martin Kaltschmitt, 2021. "Life Cycle Assessment of Bioethanol Production: A Review of Feedstock, Technology and Methodology," Energies, MDPI, vol. 14(10), pages 1-18, May.
    15. Daylan, B. & Ciliz, N., 2016. "Life cycle assessment and environmental life cycle costing analysis of lignocellulosic bioethanol as an alternative transportation fuel," Renewable Energy, Elsevier, vol. 89(C), pages 578-587.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González-García, Sara & Gasol, Carles M. & Gabarrell, Xavier & Rieradevall, Joan & Moreira, Ma Teresa & Feijoo, Gumersindo, 2010. "Environmental profile of ethanol from poplar biomass as transport fuel in Southern Europe," Renewable Energy, Elsevier, vol. 35(5), pages 1014-1023.
    2. González-García, Sara & Gasol, Carles M. & Gabarrell, Xavier & Rieradevall, Joan & Moreira, Mª Teresa & Feijoo, Gumersindo, 2009. "Environmental aspects of ethanol-based fuels from Brassica carinata: A case study of second generation ethanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2613-2620, December.
    3. Daylan, B. & Ciliz, N., 2016. "Life cycle assessment and environmental life cycle costing analysis of lignocellulosic bioethanol as an alternative transportation fuel," Renewable Energy, Elsevier, vol. 89(C), pages 578-587.
    4. González-García, Sara & Iribarren, Diego & Susmozas, Ana & Dufour, Javier & Murphy, Richard J., 2012. "Life cycle assessment of two alternative bioenergy systems involving Salix spp. biomass: Bioethanol production and power generation," Applied Energy, Elsevier, vol. 95(C), pages 111-122.
    5. González-García, Sara & Luo, Lin & Moreira, Mª Teresa & Feijoo, Gumersindo & Huppes, Gjalt, 2009. "Life cycle assessment of flax shives derived second generation ethanol fueled automobiles in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1922-1933, October.
    6. Wiloso, Edi Iswanto & Heijungs, Reinout & de Snoo, Geert R., 2012. "LCA of second generation bioethanol: A review and some issues to be resolved for good LCA practice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5295-5308.
    7. Borrion, Aiduan Li & McManus, Marcelle C. & Hammond, Geoffrey P., 2012. "Environmental life cycle assessment of lignocellulosic conversion to ethanol: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4638-4650.
    8. Chauhan, Manish Kumar & Varun & Chaudhary, Sachin & Kumar, Suneel & Samar, 2011. "Life cycle assessment of sugar industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3445-3453, September.
    9. Tahereh Soleymani Angili & Katarzyna Grzesik & Anne Rödl & Martin Kaltschmitt, 2021. "Life Cycle Assessment of Bioethanol Production: A Review of Feedstock, Technology and Methodology," Energies, MDPI, vol. 14(10), pages 1-18, May.
    10. Goh, Chun Sheng & Lee, Keat Teong, 2010. "A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 842-848, February.
    11. Adekunle, Ademola & Orsat, Valerie & Raghavan, Vijaya, 2016. "Lignocellulosic bioethanol: A review and design conceptualization study of production from cassava peels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 518-530.
    12. Jin, Chao & Yao, Mingfa & Liu, Haifeng & Lee, Chia-fon F. & Ji, Jing, 2011. "Progress in the production and application of n-butanol as a biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4080-4106.
    13. Zanxin Wang & Fangyuan Zheng & Shiya Xue, 2019. "The Economic Feasibility of the Valorization of Water Hyacinth for Bioethanol Production," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    14. Carneiro, Maria Luisa N.M. & Pradelle, Florian & Braga, Sergio L. & Gomes, Marcos Sebastião P. & Martins, Ana Rosa F.A. & Turkovics, Franck & Pradelle, Renata N.C., 2017. "Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 632-653.
    15. Pérez-López, Paula & Gasol, Carles M. & Oliver-Solà, Jordi & Huelin, Sagrario & Moreira, Ma Teresa & Feijoo, Gumersindo, 2013. "Greenhouse gas emissions from Spanish motorway transport: Key aspects and mitigation solutions," Energy Policy, Elsevier, vol. 60(C), pages 705-713.
    16. Ling-Chin, J. & Heidrich, O. & Roskilly, A.P., 2016. "Life cycle assessment (LCA) – from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 352-378.
    17. Prem Woli & Joel Paz, 2014. "Crop Management Effects on the Energy and Carbon Balances of Maize Stover-Based Ethanol Production," Energies, MDPI, vol. 8(1), pages 1-26, December.
    18. Mohapatra, Sonali & Mishra, Chinmaya & Behera, Sudhansu S. & Thatoi, Hrudayanath, 2017. "Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1007-1032.
    19. Dufour, Javier & Iribarren, Diego, 2012. "Life cycle assessment of biodiesel production from free fatty acid-rich wastes," Renewable Energy, Elsevier, vol. 38(1), pages 155-162.
    20. Yang, Q. & Chen, G.Q., 2012. "Nonrenewable energy cost of corn-ethanol in China," Energy Policy, Elsevier, vol. 41(C), pages 340-347.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:7:p:2077-2085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.