IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v146y2021ics1364032121004792.html
   My bibliography  Save this article

Lubrication of textured journal bearing by using vegetable oil: A review of approaches, challenges, and opportunities

Author

Listed:
  • Rasep, Z.
  • Muhammad Yazid, M.N.A.W.
  • Samion, S.

Abstract

Vegetable oils have a unique characteristic specifically in terms of environmental issues and are preferred as a potential bio lubricant to replace existing mineral oil. The main objective of this paper is to review the study of vegetable oil characteristics and challenges faced in the future as a future replacement of conventional oil specifically in the application of journal bearing. Surface modification of journal bearing has gained significant attention in recent years because of their enormous potential to increase the performance of journal bearing. Therefore, in this article, the potential performance of textured journal bearing by using mineral and vegetable oil as a lubricant is thoroughly reviewed. Nowadays, textured journal bearing and vegetable oil have attracted attention to the various applications in the industry. In line with the rapid development of the modification technique of journal bearing surface, the secondary objective of this paper is to provide a summary on the effect of different shapes or geometries applied, the effect on the bearing surface of the journal of complete textured or partial textured, and the effect of textured position on either the convergence or divergence area. The combination of vegetable oil as a future replacement of mineral oil as well as modification surface texture of journal bearing will become a great finding as it will improve the performance of journal bearing and at the same time can promote the application of environmentally friendly lubricant. Finally, summaries and conclusions are presented according to the reviewed and previous articles and data.

Suggested Citation

  • Rasep, Z. & Muhammad Yazid, M.N.A.W. & Samion, S., 2021. "Lubrication of textured journal bearing by using vegetable oil: A review of approaches, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:rensus:v:146:y:2021:i:c:s1364032121004792
    DOI: 10.1016/j.rser.2021.111191
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121004792
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali Usman & Sadia Riaz & Cheol Woo Park, 2018. "Hydrodynamic Conjunction of Textured Journal Surface—Bearing for Improved Frictional Response during Warm-Up of an Internal Combustion Engine," Energies, MDPI, vol. 11(12), pages 1-15, December.
    2. Khatun, Rahima & Reza, Mohammad Imam Hasan & Moniruzzaman, M. & Yaakob, Zahira, 2017. "Sustainable oil palm industry: The possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 608-619.
    3. Zulkifli, N.W.M. & Kalam, M.A. & Masjuki, H.H. & Shahabuddin, M. & Yunus, R., 2013. "Wear prevention characteristics of a palm oil-based TMP (trimethylolpropane) ester as an engine lubricant," Energy, Elsevier, vol. 54(C), pages 167-173.
    4. Wan Ghazali, Wan Nor Maawa & Mamat, Rizalman & Masjuki, H.H. & Najafi, Gholamhassan, 2015. "Effects of biodiesel from different feedstocks on engine performance and emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 585-602.
    5. Chan, Chung-Hung & Tang, Sook Wah & Mohd, Noor Khairin & Lim, Wen Huei & Yeong, Shoot Kian & Idris, Zainab, 2018. "Tribological behavior of biolubricant base stocks and additives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 145-157.
    6. Ameen, Nihayat Hussein Ameen & Durak, Ertuğrul, 2020. "Study of the tribological properties the mixture of soybean oil and used (waste) frying oil fatty acid methyl ester under boundary lubrication conditions," Renewable Energy, Elsevier, vol. 145(C), pages 1730-1747.
    7. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamnas, Amina & Unnikrishnan, G., 2023. "Bio-lubricants from vegetable oils: Characterization, modifications, applications and challenges – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zain, Munirah Md & Mohamed, Abdul Rahman, 2018. "An overview on conversion technologies to produce value added products from CH4 and CO2 as major biogas constituents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 56-63.
    2. Lim, Chun Hsion & Lim, Steven & How, Bing Shen & Ng, Wendy Pei Qin & Ngan, Sue Lin & Leong, Wei Dong & Lam, Hon Loong, 2021. "A review of industry 4.0 revolution potential in a sustainable and renewable palm oil industry: HAZOP approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Hamnas, Amina & Unnikrishnan, G., 2023. "Bio-lubricants from vegetable oils: Characterization, modifications, applications and challenges – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Mostafa Esmaeili Shayan & Gholamhassan Najafi & Barat Ghobadian & Shiva Gorjian & Mohamed Mazlan & Mehdi Samami & Alireza Shabanzadeh, 2022. "Flexible Photovoltaic System on Non-Conventional Surfaces: A Techno-Economic Analysis," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    5. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    6. Sharvini, Siva Raman & Noor, Zainura Zainon & Chong, Chun Shiong & Stringer, Lindsay C & Glew, David, 2020. "Energy generation from palm oil mill effluent: A life cycle assessment of two biogas technologies," Energy, Elsevier, vol. 191(C).
    7. Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
    8. Bahadi, Murad & Salimon, Jumat & Derawi, Darfizzi, 2021. "Synthesis of di-trimethylolpropane tetraester-based biolubricant from Elaeis guineensis kernel oil via homogeneous acid-catalyzed transesterification," Renewable Energy, Elsevier, vol. 171(C), pages 981-993.
    9. Obed M. Ali & Rizalman Mamat & Gholamhassan Najafi & Talal Yusaf & Seyed Mohammad Safieddin Ardebili, 2015. "Optimization of Biodiesel-Diesel Blended Fuel Properties and Engine Performance with Ether Additive Using Statistical Analysis and Response Surface Methods," Energies, MDPI, vol. 8(12), pages 1-15, December.
    10. El-Shafay, A.S. & Ağbulut, Ümit & Attia, El-Awady & Touileb, Kamel Lounes & Gad, M.S., 2023. "Waste to energy: Production of poultry-based fat biodiesel and experimental assessment of its usability on engine behaviors," Energy, Elsevier, vol. 262(PB).
    11. Tolgahan Kaya & Osman Akın Kutlar & Ozgur Oguz Taskiran, 2018. "Evaluation of the Effects of Biodiesel on Emissions and Performance by Comparing the Results of the New European Drive Cycle and Worldwide Harmonized Light Vehicles Test Cycle," Energies, MDPI, vol. 11(10), pages 1-14, October.
    12. Hoseinpour, Marziyeh & Sadrnia, Hassan & Tabasizadeh, Mohammad & Ghobadian, Barat, 2017. "Energy and exergy analyses of a diesel engine fueled with diesel, biodiesel-diesel blend and gasoline fumigation," Energy, Elsevier, vol. 141(C), pages 2408-2420.
    13. Awad, Omar I. & Ali, Obed M. & Mamat, Rizalman & Abdullah, A.A. & Najafi, G. & Kamarulzaman, M.K. & Yusri, I.M. & Noor, M.M., 2017. "Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1232-1242.
    14. Rulli, Maria Cristina & Casirati, Stefano & Dell’Angelo, Jampel & Davis, Kyle Frankel & Passera, Corrado & D’Odorico, Paolo, 2019. "Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 499-512.
    15. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    16. Abul Kalam Hossain & Abdul Hussain, 2019. "Impact of Nanoadditives on the Performance and Combustion Characteristics of Neat Jatropha Biodiesel," Energies, MDPI, vol. 12(5), pages 1-16, March.
    17. Kumar, Ajeet & Vachan Tirkey, Jeevan & Kumar Shukla, Shailendra, 2021. "“Comparative energy and economic analysis of different vegetable oil plants for biodiesel production in India”," Renewable Energy, Elsevier, vol. 169(C), pages 266-282.
    18. Peng, Valerie & Slocum, Alexander, 2020. "Endemic Water and Storm Trash to energy via in-situ processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Yew Heng Teoh & Hishammudin Afifi Huspi & Heoy Geok How & Farooq Sher & Zia Ud Din & Thanh Danh Le & Huu Tho Nguyen, 2021. "Effect of Intake Air Temperature and Premixed Ratio on Combustion and Exhaust Emissions in a Partial HCCI-DI Diesel Engine," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
    20. Skvorčinskienė, R. & Striūgas, N. & Galinis, A. & Lekavičius, V. & Kurkela, E. & Kurkela, M. & Lukoševičius, R. & Radinas, M. & Šermukšnienė, A., 2022. "Renewable transport fuel production combined with cogeneration plant operation and waste heat recovery in district heating system," Renewable Energy, Elsevier, vol. 189(C), pages 952-969.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:146:y:2021:i:c:s1364032121004792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.