IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v134y2020ics1364032120304068.html
   My bibliography  Save this article

Mass transfer characteristic research on electrodialysis for desalination and regeneration of solution: A comprehensive review

Author

Listed:
  • Liu, Lin
  • Cheng, Qing

Abstract

Electrodialysis (ED) is a very mature membrane separation technology. Due to its energy-saving, environmental adaptability and flexibility, ED is used in different industries for desalination and regeneration of solutions. In order to capture the internal operation mechanism of ED, and to optimize the performance and structure of ED, the mass transfer model is very significant. This paper introduces the principle and application scope of ED and the influencing factors of mass transfer in ED. The concentration difference and the moisture migration are key factors. Also, the main modeling methods of ED are summarized. Among them, the modeling methods based on Nernst-Plank equation are the most common used, because they are easy to understand and independent to describe migration process of each ion. The scope of application and shortcomings of different methods are also described in this paper. Then, a lot of work has been conducted to introduce the development of the theoretical models of ED at different solution concentration levels, as well as the limitations and optimization potentials in the development process. According to the different concentration levels of solution, the purpose of modeling the mathematical model will change. Under low concentration, the mass transfer models are more used to describe the basic concentration or velocity distribution, while the theoretical models under ultra-high concentration in liquid desiccant air conditioning system are used to predict the impact of moisture transfer on the performance of the ED. The theoretical mass transfer model will be a powerful optimization tool for ED.

Suggested Citation

  • Liu, Lin & Cheng, Qing, 2020. "Mass transfer characteristic research on electrodialysis for desalination and regeneration of solution: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120304068
    DOI: 10.1016/j.rser.2020.110115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120304068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Yi & Al-Jubainawi, Ali & Peng, Xueyuan, 2019. "Modelling and the feasibility study of a hybrid electrodialysis and thermal regeneration method for LiCl liquid desiccant dehumidification," Applied Energy, Elsevier, vol. 239(C), pages 1014-1036.
    2. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    3. Pei, Wang & Cheng, Qing & Jiao, Shun & Liu, Lin, 2019. "Performance evaluation of the electrodialysis regenerator for the lithium bromide solution with high concentration in the liquid desiccant air-conditioning system," Energy, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zan Li & Hongkun Zhang & Wenrui Jiang, 2021. "Research on the Sustainable Heterogeneous Catalyst Development for Photocatalytic Treatment of Phenol," Sustainability, MDPI, vol. 13(9), pages 1-12, April.
    2. Zhuo Wang & Yanjie Zhang & Tao Wang & Bo Zhang & Hongwen Ma, 2021. "Design and Energy Consumption Analysis of Small Reverse Osmosis Seawater Desalination Equipment," Energies, MDPI, vol. 14(8), pages 1-18, April.
    3. Cheng, Qing & Wang, Han & Liu, Lin, 2022. "An ion mass transfer model of electrodialysis regenerator for inorganic salt liquid desiccants," Energy, Elsevier, vol. 239(PE).
    4. Liang, Mengjun & Karthick, Ramalingam & Wei, Qiang & Dai, Jinhong & Jiang, Zhuosheng & Chen, Xuncai & Oo, Than Zaw & Aung, Su Htike & Chen, Fuming, 2022. "The progress and prospect of the solar-driven photoelectrochemical desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    2. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Cheng, Qing & Wang, Han & Liu, Lin, 2022. "An ion mass transfer model of electrodialysis regenerator for inorganic salt liquid desiccants," Energy, Elsevier, vol. 239(PE).
    4. Shukla, D.L. & Modi, K.V., 2022. "Influence of distinct input parameters on performance indices of dehumidifier, regenerator and on liquid desiccant-operated evaporative cooling system – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Pasqualin, P. & Lefers, R. & Mahmoud, S. & Davies, P.A., 2022. "Comparative review of membrane-based desalination technologies for energy-efficient regeneration in liquid desiccant air conditioning of greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Drosou, Vassiliki & Kosmopoulos, Panos & Papadopoulos, Agis, 2016. "Solar cooling system using concentrating collectors for office buildings: A case study for Greece," Renewable Energy, Elsevier, vol. 97(C), pages 697-708.
    7. Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
    8. Liu, Hongdou & Yang, Hongquan & Qi, Ronghui, 2020. "A review of electrically driven dehumidification technology for air-conditioning systems," Applied Energy, Elsevier, vol. 279(C).
    9. Gurubalan, A. & Maiya, M.P. & Geoghegan, Patrick J., 2019. "A comprehensive review of liquid desiccant air conditioning system," Applied Energy, Elsevier, vol. 254(C).
    10. Miliauskas, G. & Maziukienė, M. & Jouhara, H. & Poškas, R., 2019. "Investigation of mass and heat transfer transitional processes of water droplets in wet gas flow in the framework of energy recovery technologies for biofuel combustion and flue gas removal," Energy, Elsevier, vol. 173(C), pages 740-754.
    11. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    12. M. Mujahid Rafique & Shafiqur Rehman & Luai M. Alhems & Aref Lashin, 2016. "Parametric Analysis of a Rotary Type Liquid Desiccant Air Conditioning System," Energies, MDPI, vol. 9(4), pages 1-15, April.
    13. Song, Xia & Zhang, Lun & Zhang, Xiaosong, 2019. "Analysis of the temperatures of heating and cooling sources and the air states in liquid desiccant dehumidification systems regenerated by return air," Energy, Elsevier, vol. 168(C), pages 651-661.
    14. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    15. Wen, Tao & Lu, Lin & Dong, Chuanshuai & Luo, Yimo, 2018. "Development and experimental study of a novel plate dehumidifier made of anodized aluminum," Energy, Elsevier, vol. 144(C), pages 169-177.
    16. Tao Wen & Lin Lu & Hongxing Yang & Yimo Luo, 2018. "Investigation on the Regeneration and Corrosion Characteristics of an Anodized Aluminum Plate Regenerator," Energies, MDPI, vol. 11(5), pages 1-15, May.
    17. Storle, Devin & Abdel-Salam, Mohamed R.H. & Simonson, Carey J., 2019. "Energy performance comparison of a 3-fluid and 2-fluid liquid desiccant membrane air-conditioning systems in an office building," Energy, Elsevier, vol. 176(C), pages 437-456.
    18. Wen, Tao & Luo, Yimo & Wang, Meng & She, Xiaohui, 2021. "Comparative study on the liquid desiccant dehumidification performance of lithium chloride and potassium formate," Renewable Energy, Elsevier, vol. 167(C), pages 841-852.
    19. Giampieri, Alessandro & Ma, Zhiwei & Smallbone, Andrew & Roskilly, Anthony Paul, 2018. "Thermodynamics and economics of liquid desiccants for heating, ventilation and air-conditioning – An overview," Applied Energy, Elsevier, vol. 220(C), pages 455-479.
    20. Túlio Nascimento Porto & João M. P. Q. Delgado & Ana Sofia Guimarães & Hortência Luma Fernandes Magalhães & Gicelia Moreira & Balbina Brito Correia & Tony Freire de Andrade & Antonio Gilson Barbosa de, 2020. "Phase Change Material Melting Process in a Thermal Energy Storage System for Applications in Buildings," Energies, MDPI, vol. 13(12), pages 1-32, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120304068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.