IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v133y2020ics1364032120305293.html
   My bibliography  Save this article

Finding the niche: A review of market assessment methodologies for rural electrification with small scale wind power

Author

Listed:
  • Leary, J.
  • Czyrnek-Delêtre, M.
  • Alsop, A.
  • Eales, A.
  • Marandin, L.
  • Org, M.
  • Craig, M.
  • Ortiz, W.
  • Casillas, C.
  • Persson, J.
  • Dienst, C.
  • Brown, E.
  • While, A.
  • Cloke, J.
  • Latoufis, K.

Abstract

The mass roll out of solar PV across the Global South has enabled electricity access for millions of people. In the right context, Small Wind Turbines (SWTs) can be complementary, offering the potential to generate at times of low solar resource (night, monsoon season, winter, etc.) and increasing the proportion of the total energy system that can be manufactured locally. However, many contextual factors critically affect the viability of the technology, such as the extreme variability in the wind resource itself and the local availability of technical support. Therefore, performing a detailed market analysis in each new context is much more important. The Wind Empowerment Market Assessment Methodology (WEMAM) is a multi-scalar, transdisciplinary methodology for identifying the niche contexts where small wind can make a valuable contribution to rural electrification. This paper aims to inform the development of WEMAM with a critical review of existing market assessment methodologies. By breaking down WEMAM into its component parts, reflecting upon its practical applications to date and drawing upon insights from the literature, opportunities where it could continue to evolve are highlighted. Key opportunities include shifting the focus towards development outcomes; creating community archetypes; localised studies in high potential regions; scenario modelling and MCDA ranking of proposed interventions; participatory market mapping; and applying socio-technical transitions theory to understand how the small wind niche can break through into the mainstream.

Suggested Citation

  • Leary, J. & Czyrnek-Delêtre, M. & Alsop, A. & Eales, A. & Marandin, L. & Org, M. & Craig, M. & Ortiz, W. & Casillas, C. & Persson, J. & Dienst, C. & Brown, E. & While, A. & Cloke, J. & Latoufis, K., 2020. "Finding the niche: A review of market assessment methodologies for rural electrification with small scale wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
  • Handle: RePEc:eee:rensus:v:133:y:2020:i:c:s1364032120305293
    DOI: 10.1016/j.rser.2020.110240
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120305293
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kanagawa, Makoto & Nakata, Toshihiko, 2007. "Analysis of the energy access improvement and its socio-economic impacts in rural areas of developing countries," Ecological Economics, Elsevier, vol. 62(2), pages 319-329, April.
    2. Alexander Tuebke & Hector Hernandez Guevara, 2011. "Techno-economic analysis of key renewable energy technologies (PV, CSP and wind)," JRC Research Reports JRC66028, Joint Research Centre.
    3. Nguyen, Khanh Q., 2007. "Wind energy in Vietnam: Resource assessment, development status and future implications," Energy Policy, Elsevier, vol. 35(2), pages 1405-1413, February.
    4. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Hierarchical methodology to optimize the design of stand-alone electrification systems for rural communities considering technical and social criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 182-196.
    5. Lew, Debra J., 2000. "Alternatives to coal and candles: wind power in China," Energy Policy, Elsevier, vol. 28(4), pages 271-286, April.
    6. Kamp, Linda M. & Vanheule, Lynn F.I., 2015. "Review of the small wind turbine sector in Kenya: Status and bottlenecks for growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 470-480.
    7. Reddy, Sudhakar & Painuly, J.P, 2004. "Diffusion of renewable energy technologies—barriers and stakeholders’ perspectives," Renewable Energy, Elsevier, vol. 29(9), pages 1431-1447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    2. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shih-Chieh Huang & Shang-Lien Lo & Yen-Ching Lin, 2013. "To Re-Explore the Causality between Barriers to Renewable Energy Development: A Case Study of Wind Energy," Energies, MDPI, vol. 6(9), pages 1-24, August.
    2. Gabriel, Cle-Anne, 2016. "What is challenging renewable energy entrepreneurs in developing countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 362-371.
    3. Farkat Diógenes, Jamil Ramsi & Coelho Rodrigues, José & Farkat Diógenes, Maria Caroline & Claro, João, 2020. "Overcoming barriers to onshore wind farm implementation in Brazil," Energy Policy, Elsevier, vol. 138(C).
    4. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2016. "An integrated systems model for energy services in rural developing communities," Energy, Elsevier, vol. 113(C), pages 536-557.
    5. San, Vibol & Spoann, Vin & Ly, Dalin & Chheng, Ngov Veng, 2012. "Fuelwood consumption patterns in Chumriey Mountain, Kampong Chhnang Province, Cambodia," Energy, Elsevier, vol. 44(1), pages 335-346.
    6. Jäger, Tobias & McKenna, Russell & Fichtner, Wolf, 2015. "Onshore wind energy in Baden-Württemberg: a bottom-up economic assessment of the socio-technical potential," Working Paper Series in Production and Energy 7, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    7. Wolde-Ghiorgis, W., 2002. "Renewable energy for rural development in Ethiopia: the case for new energy policies and institutional reform," Energy Policy, Elsevier, vol. 30(11-12), pages 1095-1105, September.
    8. Jeonghwa Cha & Kyungbo Park & Hangook Kim & Jongyi Hong, 2023. "Crisis Index Prediction Based on Momentum Theory and Earnings Downside Risk Theory: Focusing on South Korea’s Energy Industry," Energies, MDPI, vol. 16(5), pages 1-20, February.
    9. Lema, Adrian & Ruby, Kristian, 2007. "Between fragmented authoritarianism and policy coordination: Creating a Chinese market for wind energy," Energy Policy, Elsevier, vol. 35(7), pages 3879-3890, July.
    10. Vaidyanathan, Geeta & Sankaranarayanan, Ramani & Yap, Nonita T., 2019. "Bridging the chasm – Diffusion of energy innovations in poor infrastructure starved communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 243-255.
    11. Minh Ha-Duong & Sven Teske & Dimitri Pescia & Mentari Pujantoro, 2021. "Planning, policy and integration for sustainable development of offshore wind energy in Vietnam 2022 - 2030," Working Papers hal-02329698, HAL.
    12. Mansoor Mustafa & Muhammad Omer Farooq Malik & Ahsen Maqsoom, 2024. "Barriers to Solar PV Adoption in Developing Countries: Multiple Regression and Analytical Hierarchy Process Approach," Sustainability, MDPI, vol. 16(3), pages 1-19, January.
    13. Huang, Shih-Chieh & Lo, Shang-Lien & Lin, Yen-Ching, 2013. "Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power," Energy Policy, Elsevier, vol. 63(C), pages 851-861.
    14. Bal, Lalit M. & Satya, Santosh & Naik, S.N., 2010. "Solar dryer with thermal energy storage systems for drying agricultural food products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2298-2314, October.
    15. Davies-Colley, Christian & Smith, Willie, 2012. "Implementing environmental technologies in development situations: The example of ecological toilets," Technology in Society, Elsevier, vol. 34(1), pages 1-8.
    16. Frate, Claudio Albuquerque & Brannstrom, Christian, 2017. "Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil," Energy Policy, Elsevier, vol. 111(C), pages 346-352.
    17. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.
    18. Rajvikram Madurai Elavarasan & G. M. Shafiullah & Nallapaneni Manoj Kumar & Sanjeevikumar Padmanaban, 2019. "A State-of-the-Art Review on the Drive of Renewables in Gujarat, State of India: Present Situation, Barriers and Future Initiatives," Energies, MDPI, vol. 13(1), pages 1-30, December.
    19. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    20. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:133:y:2020:i:c:s1364032120305293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.