IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v119y2020ics1364032119308160.html
   My bibliography  Save this article

Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: A review

Author

Listed:
  • Shariatinia, Zahra

Abstract

Currently, several kinds of solar cells are developed and among them, organic-inorganic perovskite solar cells (PSCs) have received substantial interest because they have shown panchromatic light absorption capacities using low amounts of earth abundant materials, low exciton recombination rate, high carrier mobility and high solar to electrical power conversion efficiencies (PCEs) which can exceed 22%. In most PSCs, methylammonium lead iodide (CH3NH3PbI3 or MAPbI3) semiconductor perovskite is sandwiched between an electron transport material (ETM, n-type material) and a hole transport material (HTM, a p-type material). Two kinds of n-i-p and p-i-n configurations are fabricated which depends on the relative positions of the ETM and HTM layers in the device. The ETM in the n-i-p solar cell is usually a planar or mesoporous TiO2 thin film in which the perovskite solution is infiltrated. A disadvantage of the n-i-p cell is using very expensive HTM, 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene (spiro-OMeTAD). Although numerous HTMs have been introduced, spiro-OMeTAD is the most efficient HTM. Nonetheless, spiro-OMeTAD must be ultra-pure to produce high performance and this increases its price which is not cost-effective from economical viewpoint. Additionally, its pristine form performs badly and doping is necessary to improve its hole-mobility and conductivity. Also, the common dopants including 4-tert-butylpyridine, lithium salts and cobalt complex are corrosive and very hygroscopic which result in the device instability. In the p-i-n cells, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is extensively utilized as the HTM which is UV-unstable and hydrophilic that makes the device unstable. Furthermore, it is only deposited through solution coating process and shows acidic property that reacts with its underlying transparent conductive oxide. Thus, many attempts have been done to substitute the spiro-OMeTAD with other materials to find HTMs suitable for commercialization of PSCs. In this review, recent researches performed to improve the PCEs of PSCs using different classes of HTMs are studied.

Suggested Citation

  • Shariatinia, Zahra, 2020. "Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  • Handle: RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119308160
    DOI: 10.1016/j.rser.2019.109608
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119308160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109608?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sai Bai & Peimei Da & Cheng Li & Zhiping Wang & Zhongcheng Yuan & Fan Fu & Maciej Kawecki & Xianjie Liu & Nobuya Sakai & Jacob Tse-Wei Wang & Sven Huettner & Stephan Buecheler & Mats Fahlman & Feng Ga, 2019. "Planar perovskite solar cells with long-term stability using ionic liquid additives," Nature, Nature, vol. 571(7764), pages 245-250, July.
    2. Mingzhen Liu & Michael B. Johnston & Henry J. Snaith, 2013. "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, Nature, vol. 501(7467), pages 395-398, September.
    3. Nam Joong Jeon & Jun Hong Noh & Woon Seok Yang & Young Chan Kim & Seungchan Ryu & Jangwon Seo & Sang Il Seok, 2015. "Compositional engineering of perovskite materials for high-performance solar cells," Nature, Nature, vol. 517(7535), pages 476-480, January.
    4. Essa A. Alharbi & Ahmed Y. Alyamani & Dominik J. Kubicki & Alexander R. Uhl & Brennan J. Walder & Anwar Q. Alanazi & Jingshan Luo & Andrés Burgos-Caminal & Abdulrahman Albadri & Hamad Albrithen & Moha, 2019. "Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    5. Michael Saliba & Simonetta Orlandi & Taisuke Matsui & Sadig Aghazada & Marco Cavazzini & Juan-Pablo Correa-Baena & Peng Gao & Rosario Scopelliti & Edoardo Mosconi & Klaus-Hermann Dahmen & Filippo De A, 2016. "A molecularly engineered hole-transporting material for efficient perovskite solar cells," Nature Energy, Nature, vol. 1(2), pages 1-7, February.
    6. Wu-Qiang Wu & Qi Wang & Yanjun Fang & Yuchuan Shao & Shi Tang & Yehao Deng & Haidong Lu & Ye Liu & Tao Li & Zhibin Yang & Alexei Gruverman & Jinsong Huang, 2018. "Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    7. Wolfgang Tress & Konrad Domanski & Brian Carlsen & Anand Agarwalla & Essa A. Alharbi & Michael Graetzel & Anders Hagfeldt, 2019. "Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions," Nature Energy, Nature, vol. 4(7), pages 568-574, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alizadeh, Amin & Roudgar-Amoli, Mostafa & Bonyad-Shekalgourabi, Seyed-Milad & Shariatinia, Zahra & Mahmoudi, Melika & Saadat, Fatemeh, 2022. "Dye sensitized solar cells go beyond using perovskite and spinel inorganic materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mesquita, Isabel & Andrade, Luísa & Mendes, Adélio, 2018. "Perovskite solar cells: Materials, configurations and stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2471-2489.
    2. Ubani, C.A. & Ibrahim, M.A. & Teridi, M.A.M., 2017. "Moving into the domain of perovskite sensitized solar cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 907-915.
    3. Ke Wang & Benjamin Ecker & Yongli Gao, 2021. "Photoemission Studies on the Environmental Stability of Thermal Evaporated MAPbI 3 Thin Films and MAPbBr 3 Single Crystals," Energies, MDPI, vol. 14(7), pages 1-18, April.
    4. Tonui, Patrick & Oseni, Saheed O. & Sharma, Gaurav & Yan, Qingfenq & Tessema Mola, Genene, 2018. "Perovskites photovoltaic solar cells: An overview of current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1025-1044.
    5. Lu, Zhen & Huang, Yuewu & Zhao, Yonggang, 2023. "Elastocaloric cooler for waste heat recovery from perovskite solar cell with electricity and cooling production," Renewable Energy, Elsevier, vol. 215(C).
    6. Habibi, Mehran & Zabihi, Fatemeh & Ahmadian-Yazdi, Mohammad Reza & Eslamian, Morteza, 2016. "Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1012-1031.
    7. Jamal, M.S. & Bashar, M.S. & Hasan, A.K. Mahmud & Almutairi, Zeyad A. & Alharbi, Hamad F. & Alharthi, Nabeel H. & Karim, Mohammad R. & Misran, H. & Amin, Nowshad & Sopian, Kamaruzzaman Bin & Akhtaruzz, 2018. "Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 469-488.
    8. Xiang, Huimin & Liu, Pengyun & Ran, Ran & Wang, Wei & Zhou, Wei & Shao, Zongping, 2022. "Two-dimensional Dion-Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    9. Naveen Kumar Elumalai & Md Arafat Mahmud & Dian Wang & Ashraf Uddin, 2016. "Perovskite Solar Cells: Progress and Advancements," Energies, MDPI, vol. 9(11), pages 1-20, October.
    10. Lorenzi, Bruno & Mariani, Paolo & Reale, Andrea & Di Carlo, Aldo & Chen, Gang & Narducci, Dario, 2021. "Practical development of efficient thermoelectric – Photovoltaic hybrid systems based on wide-gap solar cells," Applied Energy, Elsevier, vol. 300(C).
    11. Yingxiao Fan & Yu Wu & Yang Xu & Wenhui Li & Huawei Zhou & Xianxi Zhang, 2022. "Situation and Perspectives on Tin-Based Perovskite Solar Cells," Sustainability, MDPI, vol. 14(24), pages 1-11, December.
    12. Sreeram Valsalakumar & Anurag Roy & Tapas K. Mallick & Justin Hinshelwood & Senthilarasu Sundaram, 2022. "An Overview of Current Printing Technologies for Large-Scale Perovskite Solar Cell Development," Energies, MDPI, vol. 16(1), pages 1-29, December.
    13. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Ming-Hsien Li & Jun-Ho Yum & Soo-Jin Moon & Peter Chen, 2016. "Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells," Energies, MDPI, vol. 9(5), pages 1-28, April.
    15. Salhi, B. & Wudil, Y.S. & Hossain, M.K. & Al-Ahmed, A. & Al-Sulaiman, F.A., 2018. "Review of recent developments and persistent challenges in stability of perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 210-222.
    16. Huihui Zhu & Ao Liu & Kyu In Shim & Haksoon Jung & Taoyu Zou & Youjin Reo & Hyunjun Kim & Jeong Woo Han & Yimu Chen & Hye Yong Chu & Jun Hyung Lim & Hyung-Jun Kim & Sai Bai & Yong-Young Noh, 2022. "High-performance hysteresis-free perovskite transistors through anion engineering," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Aleksandrova, M.P., 2023. "Study of lead-free perovskite photoconverting structures by impedance spectroscopy," Energy, Elsevier, vol. 273(C).
    18. Fangfang Wang & Mubai Li & Qiushuang Tian & Riming Sun & Hongzhuang Ma & Hongze Wang & Jingxi Chang & Zihao Li & Haoyu Chen & Jiupeng Cao & Aifei Wang & Jingjin Dong & You Liu & Jinzheng Zhao & Ying C, 2023. "Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    20. Simone M. P. Meroni & Carys Worsley & Dimitrios Raptis & Trystan M. Watson, 2021. "Triple-Mesoscopic Carbon Perovskite Solar Cells: Materials, Processing and Applications," Energies, MDPI, vol. 14(2), pages 1-37, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119308160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.