IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v117y2020ics1364032119307002.html
   My bibliography  Save this article

Review and prospects of hydrate cold storage technology

Author

Listed:
  • Cheng, Chuanxiao
  • Wang, Fan
  • Tian, Yongjia
  • Wu, Xuehong
  • Zheng, Jili
  • Zhang, Jun
  • Li, Longwei
  • Yang, Penglin
  • Zhao, Jiafei

Abstract

Hydrate cold storage technology has been intensively researched in recent years and plays an important role in the macro-control of energy. This paper reviews the diversity and variability of hydrate cold storage media and the new hydrate cold storage system. The diversity is embodied by the types of hydrate cold storage media, which include alkane hydrates, freon hydrates, CO2 hydrates, water-soluble organic hydrates, and mixed hydrates. In mixed hydrates, the different components in the mix media play different roles in the process of hydrate formation. The variability is reflected in the differences in the external environments (environmental compatibility: ozone depletion potential and global warming potential) and the multiple reinforcement methods of hydrate nucleation. The reinforcement methods including mechanical methods, external field functions, and additives (mainly surfactants, nanoparticles, porous materials, and thermodynamic accelerators) are compared and discussed for optimisation of the hydrate formation conditions. The operational characteristics and application advantages of the new cold storage systems with different hydrate media are summarised. The environmental impact, energy efficiency, life cycle assessment, and commercial and industrial possibilities of the hydrate cold storage system are discussed. Finally, this review provides a comprehensive outlook of hydrate cold storage from an application perspective.

Suggested Citation

  • Cheng, Chuanxiao & Wang, Fan & Tian, Yongjia & Wu, Xuehong & Zheng, Jili & Zhang, Jun & Li, Longwei & Yang, Penglin & Zhao, Jiafei, 2020. "Review and prospects of hydrate cold storage technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
  • Handle: RePEc:eee:rensus:v:117:y:2020:i:c:s1364032119307002
    DOI: 10.1016/j.rser.2019.109492
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119307002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oró, E. & de Gracia, A. & Castell, A. & Farid, M.M. & Cabeza, L.F., 2012. "Review on phase change materials (PCMs) for cold thermal energy storage applications," Applied Energy, Elsevier, vol. 99(C), pages 513-533.
    2. Wang, Xiaolin & Dennis, Mike & Hou, Liangzhuo, 2014. "Clathrate hydrate technology for cold storage in air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 34-51.
    3. Sun, Qibei & Kang, Yong Tae, 2015. "Experimental correlation for the formation rate of CO2 hydrate with THF (tetrahydrofuran) for cooling application," Energy, Elsevier, vol. 91(C), pages 712-719.
    4. Zhao, Jiafei & Fan, Zhen & Wang, Bin & Dong, Hongsheng & Liu, Yu & Song, Yongchen, 2016. "Simulation of microwave stimulation for the production of gas from methane hydrate sediment," Applied Energy, Elsevier, vol. 168(C), pages 25-37.
    5. Choi, Jae Woo & Chung, Jin Tack & Kang, Yong Tae, 2014. "CO2 hydrate formation at atmospheric pressure using high efficiency absorbent and surfactants," Energy, Elsevier, vol. 78(C), pages 869-876.
    6. Shi, X.J. & Zhang, P., 2013. "A comparative study of different methods for the generation of tetra-n-butyl ammonium bromide clathrate hydrate slurry in a cold storage air-conditioning system," Applied Energy, Elsevier, vol. 112(C), pages 1393-1402.
    7. Sun, Qibei & Kim, Shol & Kang, Yong Tae, 2017. "Study on dissociation characteristics of CO2 hydrate with THF for cooling application," Applied Energy, Elsevier, vol. 190(C), pages 249-256.
    8. Xu, Chun-Gang & Li, Xiao-Sen & Lv, Qiu-Nan & Chen, Zhao-Yang & Cai, Jing, 2012. "Hydrate-based CO2 (carbon dioxide) capture from IGCC (integrated gasification combined cycle) synthesis gas using bubble method with a set of visual equipment," Energy, Elsevier, vol. 44(1), pages 358-366.
    9. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    10. Bi, Yuehong & Guo, Tingwei & Zhu, Tingying & Fan, Shuanshi & Liang, Deqing & Zhang, Liang, 2004. "Influence of volumetric-flow rate in the crystallizer on the gas-hydrate cool-storage process in a new gas-hydrate cool-storage system," Applied Energy, Elsevier, vol. 78(1), pages 111-121, May.
    11. Zhao, Jiafei & Yu, Tao & Song, Yongchen & Liu, Di & Liu, Weiguo & Liu, Yu & Yang, Mingjun & Ruan, Xuke & Li, Yanghui, 2013. "Numerical simulation of gas production from hydrate deposits using a single vertical well by depressurization in the Qilian Mountain permafrost, Qinghai-Tibet Plateau, China," Energy, Elsevier, vol. 52(C), pages 308-319.
    12. Llorach-Massana, Pere & Peña, Javier & Rieradevall, Joan & Montero, Juan Ignacio, 2016. "LCA & LCCA of a PCM application to control root zone temperatures of hydroponic crops in comparison with conventional root zone heating systems," Renewable Energy, Elsevier, vol. 85(C), pages 1079-1089.
    13. Yang, Mingjun & Song, Yongchen & Jiang, Lanlan & Zhao, Yuechao & Ruan, Xuke & Zhang, Yi & Wang, Shanrong, 2014. "Hydrate-based technology for CO2 capture from fossil fuel power plants," Applied Energy, Elsevier, vol. 116(C), pages 26-40.
    14. He, Tianbiao & Nair, Sajitha K. & Babu, Ponnivalavan & Linga, Praveen & Karimi, Iftekhar A., 2018. "A novel conceptual design of hydrate based desalination (HyDesal) process by utilizing LNG cold energy," Applied Energy, Elsevier, vol. 222(C), pages 13-24.
    15. Obara, Shin'ya & Kikuchi, Yoshinobu & Ishikawa, Kyosuke & Kawai, Masahito & Yoshiaki, Kashiwaya, 2015. "Development of a compound energy system for cold region houses using small-scale natural gas cogeneration and a gas hydrate battery," Energy, Elsevier, vol. 85(C), pages 280-295.
    16. Hassan, H.Z. & Mohamad, A.A., 2013. "Thermodynamic analysis and theoretical study of a continuous operation solar-powered adsorption refrigeration system," Energy, Elsevier, vol. 61(C), pages 167-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anatoliy M. Pavlenko, 2020. "Thermodynamic Features of the Intensive Formation of Hydrocarbon Hydrates," Energies, MDPI, vol. 13(13), pages 1-18, July.
    2. Xiao, Peng & Dong, Bao-Can & Li, Jia & Zhang, Hong-Liang & Chen, Guang-Jin & Sun, Chang-Yu & Huang, Xing, 2022. "An approach to highly efficient filtration of methane hydrate slurry for the continuous hydrate production," Energy, Elsevier, vol. 259(C).
    3. Yiwei Wang & Lin Wang & Zhen Hu & Youli Li & Qiang Sun & Aixian Liu & Lanying Yang & Jing Gong & Xuqiang Guo, 2021. "The Thermodynamic and Kinetic Effects of Sodium Lignin Sulfonate on Ethylene Hydrate Formation," Energies, MDPI, vol. 14(11), pages 1-19, June.
    4. Qin, Jiyou & Chinen, Daigo & Obara, Shin'ya, 2022. "Storage and discharge efficiency of small-temperature-difference CO2 hydrate batteries with cyclopentane accelerators," Applied Energy, Elsevier, vol. 308(C).
    5. Chen, Zhaoyang & Fang, Jie & Xu, Chungang & Xia, Zhiming & Yan, Kefeng & Li, Xiaosen, 2020. "Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method," Energy, Elsevier, vol. 199(C).
    6. Alberto Maria Gambelli & Federico Rossi, 2023. "Review on the Usage of Small-Chain Hydrocarbons (C 2 —C 4 ) as Aid Gases for Improving the Efficiency of Hydrate-Based Technologies," Energies, MDPI, vol. 16(8), pages 1-22, April.
    7. Fatima Doria Benmesbah & Livio Ruffine & Pascal Clain & Véronique Osswald & Olivia Fandino & Laurence Fournaison & Anthony Delahaye, 2020. "Methane Hydrate Formation and Dissociation in Sand Media: Effect of Water Saturation, Gas Flowrate and Particle Size," Energies, MDPI, vol. 13(19), pages 1-21, October.
    8. Shi, Kangji & Wang, Zifei & Jia, Yuxin & Li, Qingping & Lv, Xin & Wang, Tian & Zhang, Lunxiang & Liu, Yu & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2022. "Effects of the vertical heterogeneity on the gas production behavior from hydrate reservoirs simulated by the fine sediments from the South China Sea," Energy, Elsevier, vol. 255(C).
    9. Hongsheng Dong & Lunxiang Zhang & Jiaqi Wang, 2022. "Formation, Exploration, and Development of Natural Gas Hydrates," Energies, MDPI, vol. 15(16), pages 1-4, August.
    10. Dong, Hongsheng & Wang, Jiaqi & Xie, Zhuoxue & Wang, Bin & Zhang, Lunxiang & Shi, Quan, 2021. "Potential applications based on the formation and dissociation of gas hydrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Anatoliy M. Pavlenko & Hanna Koshlak, 2021. "Intensification of Gas Hydrate Formation Processes by Renewal of Interfacial Area between Phases," Energies, MDPI, vol. 14(18), pages 1-17, September.
    12. Wang, Lanyun & Zhang, Yajuan & Xie, Huilong & Lu, Xiaoran & Wen, Xinglin & Liu, Zhen & Zhou, Huajian & Liu, Zejian & Xu, Yongliang, 2022. "Effect of voltage and initial temperature on thermodynamics and kinetics of CO2 hydrate formation in an electrostatic spraying reactor," Energy, Elsevier, vol. 239(PD).
    13. Cheng, Chuanxiao & Wang, Fan & Qi, Tian & Xu, Peiyuan & Zhang, Quanguo & Zhang, Zhiping & He, Chao & Zhang, Jun & Zheng, Jili & Zhao, Jiafei & Zhang, Hanquan & Xiao, Bo, 2021. "Depressurization-induced changes in memory effect of hydrate reformation correlated with sediment morphology," Energy, Elsevier, vol. 217(C).
    14. Yang, Lei & Guan, Dawei & Qu, Aoxing & Li, Qingping & Ge, Yang & Liang, Huiyong & Dong, Hongsheng & Leng, Shudong & Liu, Yanzhen & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen, 2023. "Thermotactic habit of gas hydrate growth enables a fast transformation of melting ice," Applied Energy, Elsevier, vol. 331(C).
    15. Cheng, Chuanxiao & Lai, Zhengxiang & Jin, Tingxiang & Jing, Zhiyong & Geng, Wangning & Qi, Tian & Zhu, Shiquan & Zhang, Jun & Liu, Jianxiu & Wang, Fan & Dong, Hongsheng & Zhang, Lunxiang, 2022. "Rapid nucleation and growth of tetrafluoroethane hydrate in the cyclic process of boiling–condensation," Energy, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Sung & Park, Jungjoon & Kang, Yong Tae, 2019. "Experimental investigation on CO2 hydrate formation/dissociation for cold thermal energy harvest and transportation applications," Applied Energy, Elsevier, vol. 242(C), pages 1358-1368.
    2. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    3. Bi, Yuehong & Chen, Jie & Miao, Zhen, 2016. "Thermodynamic optimization for dissociation process of gas hydrates," Energy, Elsevier, vol. 106(C), pages 270-276.
    4. Chen, Ye & Gao, Yonghai & Zhao, Yipeng & Chen, Litao & Dong, Changyin & Sun, Baojiang, 2018. "Experimental investigation of different factors influencing the replacement efficiency of CO2 for methane hydrate," Applied Energy, Elsevier, vol. 228(C), pages 309-316.
    5. Veluswamy, Hari Prakash & Kumar, Asheesh & Premasinghe, Kulesha & Linga, Praveen, 2017. "Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system," Applied Energy, Elsevier, vol. 207(C), pages 573-583.
    6. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
    7. Zheng, Junjie & Zhang, Peng & Linga, Praveen, 2017. "Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures," Applied Energy, Elsevier, vol. 194(C), pages 267-278.
    8. Wang, Xiaolin & Dennis, Mike, 2016. "Characterisation of thermal properties and charging performance of semi-clathrate hydrates for cold storage applications," Applied Energy, Elsevier, vol. 167(C), pages 59-69.
    9. Sun, Qibei & Kang, Yong Tae, 2016. "Review on CO2 hydrate formation/dissociation and its cold energy application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 478-494.
    10. Sun, Xiang & Li, Yanghui & Liu, Yu & Song, Yongchen, 2019. "The effects of compressibility of natural gas hydrate-bearing sediments on gas production using depressurization," Energy, Elsevier, vol. 185(C), pages 837-846.
    11. Kim, Shol & Lee, Seong Hyuk & Kang, Yong Tae, 2017. "Characteristics of CO2 hydrate formation/dissociation in H2O + THF aqueous solution and estimation of CO2 emission reduction by district cooling application," Energy, Elsevier, vol. 120(C), pages 362-373.
    12. Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
    13. Yang, Mingjun & Chong, Zheng Rong & Zheng, Jianan & Song, Yongchen & Linga, Praveen, 2017. "Advances in nuclear magnetic resonance (NMR) techniques for the investigation of clathrate hydrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1346-1360.
    14. Wang, Bin & Liu, Shuyang & Wang, Pengfei, 2022. "Microwave-assisted high-efficient gas production of depressurization-induced methane hydrate exploitation," Energy, Elsevier, vol. 247(C).
    15. Nguyen, Ngoc N. & La, Vinh T. & Huynh, Chinh D. & Nguyen, Anh V., 2022. "Technical and economic perspectives of hydrate-based carbon dioxide capture," Applied Energy, Elsevier, vol. 307(C).
    16. Wang, Xiao & Pan, Lin & Lau, Hon Chung & Zhang, Ming & Li, Longlong & Zhou, Qiao, 2018. "Reservoir volume of gas hydrate stability zones in permafrost regions of China," Applied Energy, Elsevier, vol. 225(C), pages 486-500.
    17. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong & Song, Yongchen, 2021. "Numerical evaluation of free gas accumulation behavior in a reservoir during methane hydrate production using a multiple-well system," Energy, Elsevier, vol. 218(C).
    18. Yi, Jie & Zhong, Dong-Liang & Yan, Jin & Lu, Yi-Yu, 2019. "Impacts of the surfactant sulfonated lignin on hydrate based CO2 capture from a CO2/CH4 gas mixture," Energy, Elsevier, vol. 171(C), pages 61-68.
    19. Minghao Yu & Weizhong Li & Bo Dong & Cong Chen & Xin Wang, 2018. "Simulation for the Effects of Well Pressure and Initial Temperature on Methane Hydrate Dissociation," Energies, MDPI, vol. 11(5), pages 1-13, May.
    20. Foroutan, Shima & Mohsenzade, Hanie & Dashti, Ali & Roosta, Hadi, 2021. "New insights into the evaluation of kinetic hydrate inhibitors and energy consumption in rocking and stirred cells," Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:117:y:2020:i:c:s1364032119307002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.