IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v97y2016icp89-96.html
   My bibliography  Save this article

Feasibility of a fully autonomous wireless monitoring system for a wind turbine blade

Author

Listed:
  • Esu, O.O.
  • Lloyd, S.D.
  • Flint, J.A.
  • Watson, S.J.

Abstract

Condition monitoring (CM) of wind turbine blades has significant benefits for wind farm operators and insurers alike. Blades present a particular challenge in terms of operations and maintenance: the wide range of materials used in their construction makes it difficult to predict lifetimes; loading is stochastic and highly variable; and access can be problematic due to the remote locations where turbines are frequently located, particularly for offshore installations. Whilst previous works have indicated that Micro Electromechanical Systems (MEMS) accelerometers are viable devices for measuring the vibrations from which diagnostic information can be derived, thus far there has been no analysis of how such a system would be powered. This paper considers the power requirement of a self-powered blade-tip autonomous system and how those requirements can be met. The radio link budget is derived for the system and the average power requirement assessed. Following this, energy harvesting methods such as photovoltaics, vibration, thermal and radio frequency (RF) are explored. Energy storage techniques and energy regulation for the autonomous system are assessed along with their relative merits. It is concluded that vibration (piezoelectric) energy harvesting combined with lithium-ion batteries are suitable selections for such a system.

Suggested Citation

  • Esu, O.O. & Lloyd, S.D. & Flint, J.A. & Watson, S.J., 2016. "Feasibility of a fully autonomous wireless monitoring system for a wind turbine blade," Renewable Energy, Elsevier, vol. 97(C), pages 89-96.
  • Handle: RePEc:eee:renene:v:97:y:2016:i:c:p:89-96
    DOI: 10.1016/j.renene.2016.05.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116304323
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.05.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Bin & Sun, Dongbai, 2013. "Testing, inspecting and monitoring technologies for wind turbine blades: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 515-526.
    2. Lee, Jae-Kyung & Park, Joon-Young & Oh, Ki-Yong & Ju, Seung-Hwan & Lee, Jun-Shin, 2015. "Transformation algorithm of wind turbine blade moment signals for blade condition monitoring," Renewable Energy, Elsevier, vol. 79(C), pages 209-218.
    3. García Márquez, Fausto Pedro & Tobias, Andrew Mark & Pinar Pérez, Jesús María & Papaelias, Mayorkinos, 2012. "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Elsevier, vol. 46(C), pages 169-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, H.F. & Zheng, J.F. & Xie, Z.L. & Lu, L.J. & Ni, Y.Q. & Ko, J.M., 2017. "Temperature effects on vision measurement system in long-term continuous monitoring of displacement," Renewable Energy, Elsevier, vol. 114(PB), pages 968-983.
    2. Cheng, Tinghai & Fu, Xianpeng & Liu, Wenbo & Lu, Xiaohui & Chen, Xiyan & Wang, Yingting & Bao, Gang, 2019. "Airfoil-based cantilevered polyvinylidene fluoride layer generator for translating amplified air-flow energy," Renewable Energy, Elsevier, vol. 135(C), pages 399-407.
    3. Jiménez, Alfredo Arcos & García Márquez, Fausto Pedro & Moraleda, Victoria Borja & Gómez Muñoz, Carlos Quiterio, 2019. "Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis," Renewable Energy, Elsevier, vol. 132(C), pages 1034-1048.
    4. Wang, Jian-Xu & Su, Wen-Bin & Li, Ji-Chao & Wang, Chun-Ming, 2022. "A rotational piezoelectric energy harvester based on trapezoid beam: Simulation and experiment," Renewable Energy, Elsevier, vol. 184(C), pages 619-626.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beganovic, Nejra & Söffker, Dirk, 2016. "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained result," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 68-83.
    2. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    3. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    4. Chandrasekhar, Kartik & Stevanovic, Nevena & Cross, Elizabeth J. & Dervilis, Nikolaos & Worden, Keith, 2021. "Damage detection in operational wind turbine blades using a new approach based on machine learning," Renewable Energy, Elsevier, vol. 168(C), pages 1249-1264.
    5. Jiménez, Alfredo Arcos & García Márquez, Fausto Pedro & Moraleda, Victoria Borja & Gómez Muñoz, Carlos Quiterio, 2019. "Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis," Renewable Energy, Elsevier, vol. 132(C), pages 1034-1048.
    6. Guo, Jihong & Liu, Chao & Cao, Jinfeng & Jiang, Dongxiang, 2021. "Damage identification of wind turbine blades with deep convolutional neural networks," Renewable Energy, Elsevier, vol. 174(C), pages 122-133.
    7. Sungmok Hwang & Cheol Yoo, 2021. "Health Monitoring and Diagnosis System for a Small H-Type Darrieus Vertical-Axis Wind Turbine," Energies, MDPI, vol. 14(21), pages 1-18, November.
    8. Yang, Ruizhen & He, Yunze & Zhang, Hong, 2016. "Progress and trends in nondestructive testing and evaluation for wind turbine composite blade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1225-1250.
    9. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    10. Segovia Ramírez, Isaac & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2022. "A novel approach to optimize the positioning and measurement parameters in photovoltaic aerial inspections," Renewable Energy, Elsevier, vol. 187(C), pages 371-389.
    11. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    12. Bon-Yong Koo & Dae-Yi Jung, 2019. "A Comparative Study on Primary Bearing Rating Life of a 5-MW Two-Blade Wind Turbine System Based on Two Different Control Domains," Energies, MDPI, vol. 12(13), pages 1-16, July.
    13. Wu, Wen & Prescott, Darren & Remenyte-Prescott, Rasa & Saleh, Ali & Ruano, Manuel Chiachio, 2024. "An asset management modelling framework for wind turbine blades considering monitoring system reliability," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    14. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    15. Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
    16. Gonzalez, Elena & Stephen, Bruce & Infield, David & Melero, Julio J., 2019. "Using high-frequency SCADA data for wind turbine performance monitoring: A sensitivity study," Renewable Energy, Elsevier, vol. 131(C), pages 841-853.
    17. Chen, Jinglong & Pan, Jun & Li, Zipeng & Zi, Yanyang & Chen, Xuefeng, 2016. "Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals," Renewable Energy, Elsevier, vol. 89(C), pages 80-92.
    18. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    19. Moynihan, Bridget & Moaveni, Babak & Liberatore, Sauro & Hines, Eric, 2022. "Estimation of blade forces in wind turbines using blade root strain measurements with OpenFAST verification," Renewable Energy, Elsevier, vol. 184(C), pages 662-676.
    20. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:97:y:2016:i:c:p:89-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.