IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v60y2016icp1225-1250.html
   My bibliography  Save this article

Progress and trends in nondestructive testing and evaluation for wind turbine composite blade

Author

Listed:
  • Yang, Ruizhen
  • He, Yunze
  • Zhang, Hong

Abstract

Wind energy is one of the fastest growing renewable energy resources. It is distinctly important to increase reliability and availability of wind turbines and further to reduce the wind energy cost. Blades are considered to be one of the most critical components in wind turbine system because they convert Kinetic energy of wind into useable power. Blades are fabricated by carbon fiber reinforced polymer (CFRP) or glass fiber reinforced polymer (GFRP). Flaws and damages are inevitable during either fabrication or lifetime of a composite blade. Thus, non-destructive testing (NDT) and structural health monitoring (SHM) for wind turbine blade (WTB) are required to prevent failures and increase reliability in both manufacturing quality control and in-service inspection. In this work, a fully, in-depth and comprehensive review of NDT techniques for WTB inspection was reported based on an orderly and concise literature survey. Firstly, typical flaw and damage occurring in manufacturing progress and in service of WTB were introduced. Next, the developments of visual, sonic and ultrasonic, optical, electromagnetic, thermal and radiographic NDT for composite WTB inspection were reviewed. Thereafter, strengths and limitations of NDT techniques were concluded through comparison studies. In the end, some research trends in WTB NDT have been predicted, for example in combination with SHM. This work will provide a guide for NDT and SHM of WTB, which plays an important role in wind turbine safety control and wind energy cost savings. In addition, this work can benefit the NDT development in the field of renewable energy, such as solar energy, and energy conservation field, such as building diagnosis.

Suggested Citation

  • Yang, Ruizhen & He, Yunze & Zhang, Hong, 2016. "Progress and trends in nondestructive testing and evaluation for wind turbine composite blade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1225-1250.
  • Handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:1225-1250
    DOI: 10.1016/j.rser.2016.02.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116002343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.02.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Bin & Sun, Dongbai, 2013. "Testing, inspecting and monitoring technologies for wind turbine blades: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 515-526.
    2. Guandalini, Giulio & Campanari, Stefano & Romano, Matteo C., 2015. "Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment," Applied Energy, Elsevier, vol. 147(C), pages 117-130.
    3. Wang, Wen-Xue & Matsubara, Terutake & Hu, Junfeng & Odahara, Satoru & Nagai, Tomoyuki & Karasutani, Takashi & Ohya, Yuji, 2015. "Experimental investigation into the influence of the flanged diffuser on the dynamic behavior of CFRP blade of a shrouded wind turbine," Renewable Energy, Elsevier, vol. 78(C), pages 386-397.
    4. Pieraccini, Massimiliano & Parrini, Filippo & Fratini, Matteo & Atzeni, Carlo & Spinelli, Paolo, 2008. "In-service testing of wind turbine towers using a microwave sensor," Renewable Energy, Elsevier, vol. 33(1), pages 13-21.
    5. de Prada Gil, Mikel & Gomis-Bellmunt, Oriol & Sumper, Andreas, 2014. "Technical and economic assessment of offshore wind power plants based on variable frequency operation of clusters with a single power converter," Applied Energy, Elsevier, vol. 125(C), pages 218-229.
    6. Keatley, P. & Shibli, A. & Hewitt, N.J., 2013. "Estimating power plant start costs in cyclic operation," Applied Energy, Elsevier, vol. 111(C), pages 550-557.
    7. Chehouri, Adam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Review of performance optimization techniques applied to wind turbines," Applied Energy, Elsevier, vol. 142(C), pages 361-388.
    8. Hameed, Z. & Hong, Y.S. & Cho, Y.M. & Ahn, S.H. & Song, C.K., 2009. "Condition monitoring and fault detection of wind turbines and related algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 1-39, January.
    9. Soua, Slim & Van Lieshout, Paul & Perera, Asanka & Gan, Tat-Hean & Bridge, Bryan, 2013. "Determination of the combined vibrational and acoustic emission signature of a wind turbine gearbox and generator shaft in service as a pre-requisite for effective condition monitoring," Renewable Energy, Elsevier, vol. 51(C), pages 175-181.
    10. García Márquez, Fausto Pedro & Tobias, Andrew Mark & Pinar Pérez, Jesús María & Papaelias, Mayorkinos, 2012. "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Elsevier, vol. 46(C), pages 169-178.
    11. Mills, Andrew D. & Wiser, Ryan H., 2015. "Strategies to mitigate declines in the economic value of wind and solar at high penetration in California," Applied Energy, Elsevier, vol. 147(C), pages 269-278.
    12. Liu, W.Y. & Tang, B.P. & Han, J.G. & Lu, X.N. & Hu, N.N. & He, Z.Z., 2015. "The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 466-472.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Xiyun & Zhang, Yanfeng & Lv, Wei & Wang, Dong, 2021. "Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier," Renewable Energy, Elsevier, vol. 163(C), pages 386-397.
    2. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.
    3. Murray, Robynne E. & Roadman, Jason & Beach, Ryan, 2019. "Fusion joining of thermoplastic composite wind turbine blades: Lap-shear bond characterization," Renewable Energy, Elsevier, vol. 140(C), pages 501-512.
    4. García Márquez, Fausto Pedro & Peco Chacón, Ana María, 2020. "A review of non-destructive testing on wind turbines blades," Renewable Energy, Elsevier, vol. 161(C), pages 998-1010.
    5. Wei Li & Shinai Xu & Baiyun Qian & Xiaoxia Gao & Xiaoxun Zhu & Zeqi Shi & Wei Liu & Qiaoliang Hu, 2022. "Large-Scale Wind Turbine’s Load Characteristics Excited by the Wind and Grid in Complex Terrain: A Review," Sustainability, MDPI, vol. 14(24), pages 1-29, December.
    6. Abdul Ghani Olabi & Tabbi Wilberforce & Khaled Elsaid & Enas Taha Sayed & Tareq Salameh & Mohammad Ali Abdelkareem & Ahmad Baroutaji, 2021. "A Review on Failure Modes of Wind Turbine Components," Energies, MDPI, vol. 14(17), pages 1-44, August.
    7. Andrius Kulsinskas & Petar Durdevic & Daniel Ortiz-Arroyo, 2021. "Internal Wind Turbine Blade Inspections Using UAVs: Analysis and Design Issues," Energies, MDPI, vol. 14(2), pages 1-19, January.
    8. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    9. Liu, Y. & Hajj, M. & Bao, Y., 2022. "Review of robot-based damage assessment for offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Kaewniam, Panida & Cao, Maosen & Alkayem, Nizar Faisal & Li, Dayang & Manoach, Emil, 2022. "Recent advances in damage detection of wind turbine blades: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Xiaowen Song & Zhitai Xing & Yan Jia & Xiaojuan Song & Chang Cai & Yinan Zhang & Zekun Wang & Jicai Guo & Qingan Li, 2022. "Review on the Damage and Fault Diagnosis of Wind Turbine Blades in the Germination Stage," Energies, MDPI, vol. 15(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    2. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    3. Beganovic, Nejra & Söffker, Dirk, 2016. "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained result," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 68-83.
    4. Sun, Peng & Li, Jian & Wang, Caisheng & Lei, Xiao, 2016. "A generalized model for wind turbine anomaly identification based on SCADA data," Applied Energy, Elsevier, vol. 168(C), pages 550-567.
    5. Chen, Junsheng & Li, Jian & Chen, Weigen & Wang, Youyuan & Jiang, Tianyan, 2020. "Anomaly detection for wind turbines based on the reconstruction of condition parameters using stacked denoising autoencoders," Renewable Energy, Elsevier, vol. 147(P1), pages 1469-1480.
    6. Rodríguez-López, Miguel A. & López-González, Luis M. & López-Ochoa, Luis M. & Las-Heras-Casas, Jesús, 2016. "Development of indicators for the detection of equipment malfunctions and degradation estimation based on digital signals (alarms and events) from operation SCADA," Renewable Energy, Elsevier, vol. 99(C), pages 224-236.
    7. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
    8. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    9. Masoud Asgarpour & John Dalsgaard Sørensen, 2018. "Bayesian Based Diagnostic Model for Condition Based Maintenance of Offshore Wind Farms," Energies, MDPI, vol. 11(2), pages 1-17, January.
    10. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Henningsen, Keld, 2015. "Performance assessment of wind turbine gearboxes using in-service data: Current approaches and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 144-159.
    11. Sungmok Hwang & Cheol Yoo, 2021. "Health Monitoring and Diagnosis System for a Small H-Type Darrieus Vertical-Axis Wind Turbine," Energies, MDPI, vol. 14(21), pages 1-18, November.
    12. Mérigaud, Alexis & Ringwood, John V., 2016. "Condition-based maintenance methods for marine renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 53-78.
    13. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Eiriksson, Egill Thor, 2016. "Analysing RMS and peak values of vibration signals for condition monitoring of wind turbine gearboxes," Renewable Energy, Elsevier, vol. 91(C), pages 90-106.
    14. Li, Yanting & Liu, Shujun & Shu, Lianjie, 2019. "Wind turbine fault diagnosis based on Gaussian process classifiers applied to operational data," Renewable Energy, Elsevier, vol. 134(C), pages 357-366.
    15. Alberto Pliego Marugán & Fausto Pedro García Márquez & Jesús María Pinar Pérez, 2016. "Optimal Maintenance Management of Offshore Wind Farms," Energies, MDPI, vol. 9(1), pages 1-20, January.
    16. Kilic, Gokhan & Unluturk, Mehmet S., 2015. "Testing of wind turbine towers using wireless sensor network and accelerometer," Renewable Energy, Elsevier, vol. 75(C), pages 318-325.
    17. Giovanni Rinaldi & Philipp R. Thies & Lars Johanning, 2021. "Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    18. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    19. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    20. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:1225-1250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.