IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v135y2019icp399-407.html
   My bibliography  Save this article

Airfoil-based cantilevered polyvinylidene fluoride layer generator for translating amplified air-flow energy

Author

Listed:
  • Cheng, Tinghai
  • Fu, Xianpeng
  • Liu, Wenbo
  • Lu, Xiaohui
  • Chen, Xiyan
  • Wang, Yingting
  • Bao, Gang

Abstract

We introduced an innovative design of a cantilevered piezoelectric generator with airfoil-based structures for harvesting underutilized aeroelastic energy in the pneumatic system. The cantilevered piezoelectric generator is composed of a polyvinylidene fluoride layer and an airfoil baffle. The working mechanism and electric output performance are systematically investigated. By integrating into the pneumatic system, the airfoil-based cantilevered piezoelectric generator has been used for real-time energy storage. In order to improve the energy conversion efficiency of the generator, an air amplifier is added between the pneumatic system and the generator to increase the flow of air which is discharged from the pneumatic system. Compared with no air amplifier, the output voltage of the generator is increased to 3.48 times. The optimal output power can achieve 13.06 μW through the 7 MΩ resistor and under flow of 200 L/min. This work provides a way to improve the energy conversion efficiency of piezoelectric generators and may promote the development of piezoelectric generators in intelligent pneumatic system. This technology can also be extended for harvesting wind energy.

Suggested Citation

  • Cheng, Tinghai & Fu, Xianpeng & Liu, Wenbo & Lu, Xiaohui & Chen, Xiyan & Wang, Yingting & Bao, Gang, 2019. "Airfoil-based cantilevered polyvinylidene fluoride layer generator for translating amplified air-flow energy," Renewable Energy, Elsevier, vol. 135(C), pages 399-407.
  • Handle: RePEc:eee:renene:v:135:y:2019:i:c:p:399-407
    DOI: 10.1016/j.renene.2018.12.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118314770
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.12.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karami, M. Amin & Farmer, Justin R. & Inman, Daniel J., 2013. "Parametrically excited nonlinear piezoelectric compact wind turbine," Renewable Energy, Elsevier, vol. 50(C), pages 977-987.
    2. Kan, Junwu & Fan, Chuntao & Wang, Shuyun & Zhang, Zhonghua & Wen, Jianming & Huang, Leshuai, 2016. "Study on a piezo-windmill for energy harvesting," Renewable Energy, Elsevier, vol. 97(C), pages 210-217.
    3. Fu, Hailing & Yeatman, Eric M., 2017. "A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion," Energy, Elsevier, vol. 125(C), pages 152-161.
    4. Hyland, Melissa & Hunter, Haywood & Liu, Jie & Veety, Elena & Vashaee, Daryoosh, 2016. "Wearable thermoelectric generators for human body heat harvesting," Applied Energy, Elsevier, vol. 182(C), pages 518-524.
    5. Selvan, Krishna Veni & Mohamed Ali, Mohamed Sultan, 2016. "Micro-scale energy harvesting devices: Review of methodological performances in the last decade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1035-1047.
    6. Esu, O.O. & Lloyd, S.D. & Flint, J.A. & Watson, S.J., 2016. "Feasibility of a fully autonomous wireless monitoring system for a wind turbine blade," Renewable Energy, Elsevier, vol. 97(C), pages 89-96.
    7. Cha, Youngsu & Chae, Woojin & Kim, Hubert & Walcott, Horace & Peterson, Sean D. & Porfiri, Maurizio, 2016. "Energy harvesting from a piezoelectric biomimetic fish tail," Renewable Energy, Elsevier, vol. 86(C), pages 449-458.
    8. Ilyas, Mohammad Adnan & Swingler, Jonathan, 2017. "Towards a prototype module for piezoelectric energy harvesting from raindrop impacts," Energy, Elsevier, vol. 125(C), pages 716-725.
    9. Eom, Seongyong & Ahn, Seongyool & Kang, Kijoong & Choi, Gyungmin, 2017. "Correlations between electrochemical resistances and surface properties of acid-treated fuel in coal fuel cells," Energy, Elsevier, vol. 140(P1), pages 885-892.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
    2. Tian, Haigang & Shan, Xiaobiao & Sui, Guangdong & Xie, Tao, 2022. "Enhanced performance of piezoaeroelastic energy harvester with rod-shaped attachments," Energy, Elsevier, vol. 238(PB).
    3. Shi, Weijie & Chen, Chen & Yang, Chuanhui & Xian, Tongrui & Luo, Xiaohui & Zhao, Haixia, 2023. "Experimental and simulation study of a hydraulic piezoelectric energy harvester under different connection modes," Energy, Elsevier, vol. 281(C).
    4. Yu, Gang & He, Lipeng & Zhou, Jianwen & Liu, Lei & Zhang, Bangcheng & Cheng, Guangming, 2021. "Study on mirror-image rotating piezoelectric energy harvester," Renewable Energy, Elsevier, vol. 178(C), pages 692-700.
    5. Yu, Gang & He, Lipeng & Wang, Hongxin & Sun, Lei & Zhang, Zhonghua & Cheng, Guangming, 2023. "Research of rotating piezoelectric energy harvester for automotive motion," Renewable Energy, Elsevier, vol. 211(C), pages 484-493.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Gang & He, Lipeng & Zhou, Jianwen & Liu, Lei & Zhang, Bangcheng & Cheng, Guangming, 2021. "Study on mirror-image rotating piezoelectric energy harvester," Renewable Energy, Elsevier, vol. 178(C), pages 692-700.
    2. Liu, Huicong & Fu, Hailing & Sun, Lining & Lee, Chengkuo & Yeatman, Eric M., 2021. "Hybrid energy harvesting technology: From materials, structural design, system integration to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Fan, Kangqi & Zhang, Yiwei & Liu, Haiyan & Cai, Meiling & Tan, Qinxue, 2019. "A nonlinear two-degree-of-freedom electromagnetic energy harvester for ultra-low frequency vibrations and human body motions," Renewable Energy, Elsevier, vol. 138(C), pages 292-302.
    4. Zhao, Lin-Chuan & Zou, Hong-Xiang & Yan, Ge & Liu, Feng-Rui & Tan, Ting & Zhang, Wen-Ming & Peng, Zhi-Ke & Meng, Guang, 2019. "A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester," Applied Energy, Elsevier, vol. 239(C), pages 735-746.
    5. Na, Yonghyeon & Lee, Min-Seon & Lee, Jung Woo & Jeong, Young Hun, 2020. "Wind energy harvesting from a magnetically coupled piezoelectric bimorph cantilever array based on a dynamic magneto-piezo-elastic structure," Applied Energy, Elsevier, vol. 264(C).
    6. Wang, Jian-Xu & Su, Wen-Bin & Li, Ji-Chao & Wang, Chun-Ming, 2022. "A rotational piezoelectric energy harvester based on trapezoid beam: Simulation and experiment," Renewable Energy, Elsevier, vol. 184(C), pages 619-626.
    7. Haider Jaafar Chilabi & Hanim Salleh & Waleed Al-Ashtari & E. E. Supeni & Luqman Chuah Abdullah & Azizan B. As’arry & Khairil Anas Md Rezali & Mohammad Khairul Azwan, 2021. "Rotational Piezoelectric Energy Harvesting: A Comprehensive Review on Excitation Elements, Designs, and Performances," Energies, MDPI, vol. 14(11), pages 1-29, May.
    8. Haider Jaafar Chilabi & Hanim Salleh & Eris E. Supeni & Azizan As’arry & Khairil Anas Md Rezali & Ahmed B. Atrah, 2020. "Harvesting Energy from Planetary Gear Using Piezoelectric Material," Energies, MDPI, vol. 13(1), pages 1-25, January.
    9. Fan, Kangqi & Qu, Hengheng & Wu, Yipeng & Wen, Tao & Wang, Fei, 2020. "Design and development of a rotational energy harvester for ultralow frequency vibrations and irregular human motions," Renewable Energy, Elsevier, vol. 156(C), pages 1028-1039.
    10. Shen, Rong & Gou, Xiaolong & Xu, Haoyu & Qiu, Kuanrong, 2017. "Dynamic performance analysis of a cascaded thermoelectric generator," Applied Energy, Elsevier, vol. 203(C), pages 808-815.
    11. Ghomian, Taher & Kizilkaya, Orhan & Choi, Jin-Woo, 2018. "Lead sulfide colloidal quantum dot photovoltaic cell for energy harvesting from human body thermal radiation," Applied Energy, Elsevier, vol. 230(C), pages 761-768.
    12. Qian, Feng & Liu, Mingyi & Huang, Jianuo & Zhang, Jiajun & Jung, Hyunjun & Deng, Zhiqun Daniel & Hajj, Muhammad R. & Zuo, Lei, 2022. "Bio-inspired bistable piezoelectric energy harvester for powering animal telemetry tags: Conceptual design and preliminary experimental validation," Renewable Energy, Elsevier, vol. 187(C), pages 34-43.
    13. Ibrahim, Alwathiqbellah & Hassan, Mostafa, 2023. "Extended bandwidth of 2DOF double impact triboelectric energy harvesting: Theoretical and experimental verification," Applied Energy, Elsevier, vol. 333(C).
    14. Md Maruf Hossain Shuvo & Twisha Titirsha & Nazmul Amin & Syed Kamrul Islam, 2022. "Energy Harvesting in Implantable and Wearable Medical Devices for Enduring Precision Healthcare," Energies, MDPI, vol. 15(20), pages 1-50, October.
    15. Sultana, Ayesha & Alam, Md. Mehebub & Ghosh, Sujoy Kumar & Middya, Tapas Ranjan & Mandal, Dipankar, 2019. "Energy harvesting and self-powered microphone application on multifunctional inorganic-organic hybrid nanogenerator," Energy, Elsevier, vol. 166(C), pages 963-971.
    16. Kim, Choong Sun & Lee, Gyu Soup & Choi, Hyeongdo & Kim, Yong Jun & Yang, Hyeong Man & Lim, Se Hwan & Lee, Sang-Gug & Cho, Byung Jin, 2018. "Structural design of a flexible thermoelectric power generator for wearable applications," Applied Energy, Elsevier, vol. 214(C), pages 131-138.
    17. Watson, Thomas C. & Vincent, Joshua N. & Lee, Hohyun, 2019. "Effect of DC-DC voltage step-up converter impedance on thermoelectric energy harvester system design strategy," Applied Energy, Elsevier, vol. 239(C), pages 898-907.
    18. Sajib Roy & Md Humayun Kabir & Md Salauddin & Miah A. Halim, 2022. "An Electromagnetic Wind Energy Harvester Based on Rotational Magnet Pole-Pairs for Autonomous IoT Applications," Energies, MDPI, vol. 15(15), pages 1-14, August.
    19. Zhou, H.F. & Zheng, J.F. & Xie, Z.L. & Lu, L.J. & Ni, Y.Q. & Ko, J.M., 2017. "Temperature effects on vision measurement system in long-term continuous monitoring of displacement," Renewable Energy, Elsevier, vol. 114(PB), pages 968-983.
    20. Wang, Feng & Sun, Xiuting & Xu, Jian, 2018. "A novel energy harvesting device for ultralow frequency excitation," Energy, Elsevier, vol. 151(C), pages 250-260.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:135:y:2019:i:c:p:399-407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.