IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v95y2016icp277-285.html
   My bibliography  Save this article

A pH-differential dual-electrolyte microfluidic electrochemical cells for CO2 utilization

Author

Listed:
  • Lu, Xu
  • Leung, Dennis Y.C.
  • Wang, Huizhi
  • Maroto-Valer, M. Mercedes
  • Xuan, Jin

Abstract

CO2 can be converted to useful fuels by electrochemical processes. As an effective strategy to address greenhouse effect and energy storage shortage, electrochemical reduction of CO2 still needs major improvements on its efficiency and reactivity. Microfluidics provides the possibility to enhance the electrochemical performance, but few studies have focused on the virtual interface. This work demonstrates a dual electrolyte microfluidic reactor (DEMR) that improves the thermodynamic property and raises the electrochemical performance based on a laminar flow membrane-less architecture. Freed from hindrances of a membrane structure and thermodynamic limitations, DEMR could bring in 6 times higher reactivity and draws electrode potentials closer to the equilibrium status (corresponded to less electrode overpotentials). The cathode potential was reduced from −2.1 V to −0.82 V and the anode potential dropped from 1.7 V to 1 V. During the conversion of CO2, the peak Faradaic and energetic efficiencies were recorded as high as 95.6% at 143 mA/cm2 and 48.5% at 62 mA/cm2, respectively, and hence, facilitating future potential for larger-scale applications.

Suggested Citation

  • Lu, Xu & Leung, Dennis Y.C. & Wang, Huizhi & Maroto-Valer, M. Mercedes & Xuan, Jin, 2016. "A pH-differential dual-electrolyte microfluidic electrochemical cells for CO2 utilization," Renewable Energy, Elsevier, vol. 95(C), pages 277-285.
  • Handle: RePEc:eee:renene:v:95:y:2016:i:c:p:277-285
    DOI: 10.1016/j.renene.2016.04.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116303159
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.04.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Del Castillo, A. & Alvarez-Guerra, M. & Solla-Gullón, J. & Sáez, A. & Montiel, V. & Irabien, A., 2015. "Electrocatalytic reduction of CO2 to formate using particulate Sn electrodes: Effect of metal loading and particle size," Applied Energy, Elsevier, vol. 157(C), pages 165-173.
    2. Inamuddin, & Cheema, Taqi Ahmad & Zaidi, S.M.J. & Rahman, S.U., 2011. "Three dimensional numerical investigations for the effects of gas diffusion layer on PEM fuel cell performance," Renewable Energy, Elsevier, vol. 36(2), pages 529-535.
    3. Hossain, Mamdud & Islam, Sheikh Zahidul & Pollard, Patricia, 2013. "Investigation of species transport in a gas diffusion layer of a polymer electrolyte membrane fuel cell through two-phase modelling," Renewable Energy, Elsevier, vol. 51(C), pages 404-418.
    4. Wang, Huizhi & Leung, Dennis Y.C. & Xuan, Jin, 2013. "Modeling of a microfluidic electrochemical cell for CO2 utilization and fuel production," Applied Energy, Elsevier, vol. 102(C), pages 1057-1062.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouyang, Tiancheng & Lu, Jie & Xu, Peihang & Hu, Xiaoyi & Chen, Jingxian, 2022. "High-efficiency fuel utilization innovation in microfluidic fuel cells: From liquid-feed to vapor-feed," Energy, Elsevier, vol. 240(C).
    2. Tufa, Ramato Ashu & Chanda, Debabrata & Ma, Ming & Aili, David & Demissie, Taye Beyene & Vaes, Jan & Li, Qingfeng & Liu, Shanhu & Pant, Deepak, 2020. "Towards highly efficient electrochemical CO2 reduction: Cell designs, membranes and electrocatalysts," Applied Energy, Elsevier, vol. 277(C).
    3. Lu, Xu & Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2018. "A counter-flow-based dual-electrolyte protocol for multiple electrochemical applications," Applied Energy, Elsevier, vol. 217(C), pages 241-248.
    4. Pribyl-Kranewitter, B. & Beard, A. & Gîjiu, C.L. & Dinculescu, D. & Schmidt, T.J., 2022. "Influence of low-temperature electrolyser design on economic and environmental potential of CO and HCOOH production: A techno-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Lu, Xu & Leung, Dennis Y.C. & Wang, Huizhi & Xuan, Jin, 2017. "Characterization of a microfluidic reactor for CO2 conversion with electrolyte recycling," Renewable Energy, Elsevier, vol. 102(PA), pages 15-20.
    6. Vicari, Fabrizio & Galia, Alessandro & Scialdone, Onofrio, 2021. "Development of a membrane-less microfluidic thermally regenerative ammonia battery," Energy, Elsevier, vol. 225(C).
    7. Lu, Xu & Leung, Dennis Y.C. & Wang, Huizhi & Xuan, Jin, 2018. "Microfluidics-based pH-differential reactor for CO2 utilization: A mathematical study," Applied Energy, Elsevier, vol. 227(C), pages 525-532.
    8. Ruiz-López, Estela & Gandara-Loe, Jesús & Baena-Moreno, Francisco & Reina, Tomas Ramirez & Odriozola, José Antonio, 2022. "Electrocatalytic CO2 conversion to C2 products: Catalysts design, market perspectives and techno-economic aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tufa, Ramato Ashu & Chanda, Debabrata & Ma, Ming & Aili, David & Demissie, Taye Beyene & Vaes, Jan & Li, Qingfeng & Liu, Shanhu & Pant, Deepak, 2020. "Towards highly efficient electrochemical CO2 reduction: Cell designs, membranes and electrocatalysts," Applied Energy, Elsevier, vol. 277(C).
    2. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    3. Kim, Dongin & Han, Jeehoon, 2020. "Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide," Applied Energy, Elsevier, vol. 264(C).
    4. Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2017. "A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 775-795.
    5. Wang, Yifei & Leung, Dennis Y.C., 2016. "A circular stacking strategy for microfluidic fuel cells with volatile methanol fuel," Applied Energy, Elsevier, vol. 184(C), pages 659-669.
    6. Saberian, Ayad & Sajadiye, Seyed Majid, 2019. "The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation," Renewable Energy, Elsevier, vol. 138(C), pages 722-737.
    7. Wang, Fuhuan & Xie, Heping & Liu, Tao & Wu, Yifan & Chen, Bin, 2020. "Highly dispersed CuFe-nitrogen active sites electrode for synergistic electrochemical CO2 reduction at low overpotential," Applied Energy, Elsevier, vol. 269(C).
    8. Pan, Qin & Tian, Xiaochun & Li, Junpeng & Wu, Xuee & Zhao, Feng, 2021. "Interfacial electron transfer for carbon dioxide valorization in hybrid inorganic-microbial systems," Applied Energy, Elsevier, vol. 292(C).
    9. Singdeo, Debanand & Dey, Tapobrata & Gaikwad, Shrihari & Andreasen, Søren Juhl & Ghosh, Prakash C., 2017. "A new modified-serpentine flow field for application in high temperature polymer electrolyte fuel cell," Applied Energy, Elsevier, vol. 195(C), pages 13-22.
    10. Deng, Hao & Wang, Dawei & Xie, Xu & Zhou, Yibo & Yin, Yan & Du, Qing & Jiao, Kui, 2016. "Modeling of hydrogen alkaline membrane fuel cell with interfacial effect and water management optimization," Renewable Energy, Elsevier, vol. 91(C), pages 166-177.
    11. Reza Omrani & Bahman Shabani, 2019. "Gas Diffusion Layers in Fuel Cells and Electrolysers: A Novel Semi-Empirical Model to Predict Electrical Conductivity of Sintered Metal Fibres," Energies, MDPI, vol. 12(5), pages 1-17, March.
    12. Edwards, Jonathan P. & Xu, Yi & Gabardo, Christine M. & Dinh, Cao-Thang & Li, Jun & Qi, ZhenBang & Ozden, Adnan & Sargent, Edward H. & Sinton, David, 2020. "Efficient electrocatalytic conversion of carbon dioxide in a low-resistance pressurized alkaline electrolyzer," Applied Energy, Elsevier, vol. 261(C).
    13. Fu, Yishu & Li, Yanan & Zhang, Xia & Liu, Yuyu & Qiao, Jinli & Zhang, Jiujun & Wilkinson, David P., 2016. "Novel hierarchical SnO2 microsphere catalyst coated on gas diffusion electrode for enhancing energy efficiency of CO2 reduction to formate fuel," Applied Energy, Elsevier, vol. 175(C), pages 536-544.
    14. Zhang, Lijuan & Ong, Jacky & Liu, Junyi & Li, Sam Fong Yau, 2017. "Enzymatic electrosynthesis of formate from CO2 reduction in a hybrid biofuel cell system," Renewable Energy, Elsevier, vol. 108(C), pages 581-588.
    15. Wilberforce, Tabbi & El Hassan, Zaki & Ogungbemi, Emmanuel & Ijaodola, O. & Khatib, F.N. & Durrant, A. & Thompson, J. & Baroutaji, A. & Olabi, A.G., 2019. "A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 236-260.
    16. Lu, Xu & Leung, Dennis Y.C. & Wang, Huizhi & Xuan, Jin, 2018. "Microfluidics-based pH-differential reactor for CO2 utilization: A mathematical study," Applied Energy, Elsevier, vol. 227(C), pages 525-532.
    17. Yue, Pengtao & Kang, Zhongyin & Fu, Qian & Li, Jun & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2021. "Life cycle and economic analysis of chemicals production via electrolytic (bi)carbonate and gaseous CO2 conversion," Applied Energy, Elsevier, vol. 304(C).
    18. Grace, Andrews Nirmala & Choi, Song Yi & Vinoba, Mari & Bhagiyalakshmi, Margandan & Chu, Dae Hyun & Yoon, Yeoil & Nam, Sung Chan & Jeong, Soon Kwan, 2014. "Electrochemical reduction of carbon dioxide at low overpotential on a polyaniline/Cu2O nanocomposite based electrode," Applied Energy, Elsevier, vol. 120(C), pages 85-94.
    19. Zhang, Jun & Zhang, Caizhi & Li, Jin & Deng, Bo & Fan, Min & Ni, Meng & Mao, Zhanxin & Yuan, Honggeng, 2021. "Multi-perspective analysis of CO poisoning in high-temperature proton exchange membrane fuel cell stack via numerical investigation," Renewable Energy, Elsevier, vol. 180(C), pages 313-328.
    20. Lei, Gang & Zheng, Hualin & Zhang, Jun & Siong Chin, Cheng & Xu, Xinhai & Zhou, Weijiang & Zhang, Caizhi, 2023. "Analyzing characteristic and modeling of high-temperature proton exchange membrane fuel cells with CO poisoning effect," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:95:y:2016:i:c:p:277-285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.