IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v304y2021ics0306261921011077.html
   My bibliography  Save this article

Life cycle and economic analysis of chemicals production via electrolytic (bi)carbonate and gaseous CO2 conversion

Author

Listed:
  • Yue, Pengtao
  • Kang, Zhongyin
  • Fu, Qian
  • Li, Jun
  • Zhang, Liang
  • Zhu, Xun
  • Liao, Qiang

Abstract

Electrochemical CO2 reduction provides a new insight to produce value-added chemicals production, but it requires a large amount of energy inputs to support the process of CO2 capture (i.e., desorption and separation process). Carbon-based fuels production via electrolytic (bi)carbonate conversion can bypass the energy-intensive steps (desorption and separation), becoming more environmental-friendly compared to electrolytic gaseous CO2-to-chemicals conversion. Here, we comprehensively explore and assess the energy conversion and environmental impacts, and economic benefits of the (bi)carbonate-to-chemicals and gaseous CO2-to-chemicals conversions using life cycle and economic assessments. The results show that the (bi)carbonate-to-chemicals conversion promote the energy and environmental benefits but reduce the economic benefits. (Bi)carbonate-to-formate and -CO conversion show low net energy ratio (1.90 and 1.93, respectively) and Greenhouse gas emissions (−0.5238 and −0.6287 t CO2-eq/t CO2 gas injection, respectively). While gaseous CO2-to-formate and -CO conversion are more industrially feasible for commercial application due to their lower overpotentials, higher current density, and higher Faradaic efficiency. Additionally, the sensitivity analysis show that the (bi)carbonate-to-chemicals systems are more promising through reducing the overpotential, enhancing the current density and Faradaic efficiency of the systems. This work demonstrates that electrolytic (bi)carbonate-to-chemicals conversion systems are eco-friendly, and give a theoretical guide to develop this energy-efficient CO2 utilization approach.

Suggested Citation

  • Yue, Pengtao & Kang, Zhongyin & Fu, Qian & Li, Jun & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2021. "Life cycle and economic analysis of chemicals production via electrolytic (bi)carbonate and gaseous CO2 conversion," Applied Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921011077
    DOI: 10.1016/j.apenergy.2021.117768
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921011077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117768?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xue Wang & Ziyun Wang & F. Pelayo García de Arquer & Cao-Thang Dinh & Adnan Ozden & Yuguang C. Li & Dae-Hyun Nam & Jun Li & Yi-Sheng Liu & Joshua Wicks & Zitao Chen & Miaofang Chi & Bin Chen & Ying Wa, 2020. "Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation," Nature Energy, Nature, vol. 5(6), pages 478-486, June.
    2. Xiao, Chao & Fu, Qian & Liao, Qiang & Huang, Yun & Xia, Ao & Chen, Hao & Zhu, Xun, 2020. "Life cycle and economic assessments of biogas production from microalgae biomass with hydrothermal pretreatment via anaerobic digestion," Renewable Energy, Elsevier, vol. 151(C), pages 70-78.
    3. Del Castillo, A. & Alvarez-Guerra, M. & Solla-Gullón, J. & Sáez, A. & Montiel, V. & Irabien, A., 2015. "Electrocatalytic reduction of CO2 to formate using particulate Sn electrodes: Effect of metal loading and particle size," Applied Energy, Elsevier, vol. 157(C), pages 165-173.
    4. Jun Li & Fanglin Che & Yuanjie Pang & Chengqin Zou & Jane Y. Howe & Thomas Burdyny & Jonathan P. Edwards & Yuhang Wang & Fengwang Li & Ziyun Wang & Phil De Luna & Cao-Thang Dinh & Tao-Tao Zhuang & Mak, 2018. "Copper adparticle enabled selective electrosynthesis of n-propanol," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    5. Zeng, L. & Tang, Z.K. & Zhao, T.S., 2014. "A high-performance alkaline exchange membrane direct formate fuel cell," Applied Energy, Elsevier, vol. 115(C), pages 405-410.
    6. Edwards, Jonathan P. & Xu, Yi & Gabardo, Christine M. & Dinh, Cao-Thang & Li, Jun & Qi, ZhenBang & Ozden, Adnan & Sargent, Edward H. & Sinton, David, 2020. "Efficient electrocatalytic conversion of carbon dioxide in a low-resistance pressurized alkaline electrolyzer," Applied Energy, Elsevier, vol. 261(C).
    7. Hengpan Yang & Qing Lin & Chao Zhang & Xinyao Yu & Zhong Cheng & Guodong Li & Qi Hu & Xiangzhong Ren & Qianling Zhang & Jianhong Liu & Chuanxin He, 2020. "Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    8. Sun, Chi-He & Fu, Qian & Liao, Qiang & Xia, Ao & Huang, Yun & Zhu, Xun & Reungsang, Alissara & Chang, Hai-Xing, 2019. "Life-cycle assessment of biofuel production from microalgae via various bioenergy conversion systems," Energy, Elsevier, vol. 171(C), pages 1033-1045.
    9. Xingli Wang & Katharina Klingan & Malte Klingenhof & Tim Möller & Jorge Ferreira de Araújo & Isaac Martens & Alexander Bagger & Shan Jiang & Jan Rossmeisl & Holger Dau & Peter Strasser, 2021. "Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengran Li & Erdem Irtem & Hugo-Pieter Iglesias van Montfort & Maryam Abdinejad & Thomas Burdyny, 2022. "Energy comparison of sequential and integrated CO2 capture and electrochemical conversion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaili Yao & Jun Li & Adnan Ozden & Haibin Wang & Ning Sun & Pengyu Liu & Wen Zhong & Wei Zhou & Jieshu Zhou & Xi Wang & Hanqi Liu & Yongchang Liu & Songhua Chen & Yongfeng Hu & Ziyun Wang & David Sint, 2024. "In situ copper faceting enables efficient CO2/CO electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Marangon, B.B. & Castro, J.S. & Assemany, P.P. & Couto, E.A. & Calijuri, M.L., 2022. "Environmental performance of microalgae hydrothermal liquefaction: Life cycle assessment and improvement insights for a sustainable renewable diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Baiyu Yang & Ling Chen & Songlin Xue & Hao Sun & Kun Feng & Yufeng Chen & Xiang Zhang & Long Xiao & Yongze Qin & Jun Zhong & Zhao Deng & Yan Jiao & Yang Peng, 2022. "Electrocatalytic CO2 reduction to alcohols by modulating the molecular geometry and Cu coordination in bicentric copper complexes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Canabarro, N.I. & Silva-Ortiz, P. & Nogueira, L.A.H. & Cantarella, H. & Maciel-Filho, R. & Souza, G.M., 2023. "Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    5. Kim, Dongin & Han, Jeehoon, 2020. "Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide," Applied Energy, Elsevier, vol. 264(C).
    6. Zishan Han & Daliang Han & Zhe Chen & Jiachen Gao & Guangyi Jiang & Xinyu Wang & Shuaishuai Lyu & Yong Guo & Chuannan Geng & Lichang Yin & Zhe Weng & Quan-Hong Yang, 2022. "Steering surface reconstruction of copper with electrolyte additives for CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Zhang, Yi & Soldatov, Sergey & Papachristou, Ioannis & Nazarova, Natalja & Link, Guido & Frey, Wolfgang & Silve, Aude, 2022. "Pulsed microwave pretreatment of fresh microalgae for enhanced lipid extraction," Energy, Elsevier, vol. 248(C).
    8. Yinchao Yao & Tong Shi & Wenxing Chen & Jiehua Wu & Yunying Fan & Yichun Liu & Liang Cao & Zhuo Chen, 2024. "A surface strategy boosting the ethylene selectivity for CO2 reduction and in situ mechanistic insights," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Cai Wang & Xiaoyu Wang & Houan Ren & Yilin Zhang & Xiaomei Zhou & Jing Wang & Qingxin Guan & Yuping Liu & Wei Li, 2023. "Combining Fe nanoparticles and pyrrole-type Fe-N4 sites on less-oxygenated carbon supports for electrochemical CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Sun, Chihe & Xia, Ao & Liao, Qiang & Fu, Qian & Huang, Yun & Zhu, Xun, 2019. "Life-cycle assessment of biohythane production via two-stage anaerobic fermentation from microalgae and food waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 395-410.
    11. Hamish Andrew Miller & Jacopo Ruggeri & Andrea Marchionni & Marco Bellini & Maria Vincenza Pagliaro & Carlo Bartoli & Andrea Pucci & Elisa Passaglia & Francesco Vizza, 2018. "Improving the Energy Efficiency of Direct Formate Fuel Cells with a Pd/C-CeO 2 Anode Catalyst and Anion Exchange Ionomer in the Catalyst Layer," Energies, MDPI, vol. 11(2), pages 1-12, February.
    12. Mai, Van-Phung & Yang, Ruey-Jen, 2020. "Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect," Applied Energy, Elsevier, vol. 274(C).
    13. Salameh, Tareq & Tawalbeh, Muhammad & Al-Shannag, Mohammad & Saidan, Motasem & Melhem, Khalid Bani & Alkasrawi, Malek, 2020. "Energy saving in the process of bioethanol production from renewable paper mill sludge," Energy, Elsevier, vol. 196(C).
    14. Tufa, Ramato Ashu & Chanda, Debabrata & Ma, Ming & Aili, David & Demissie, Taye Beyene & Vaes, Jan & Li, Qingfeng & Liu, Shanhu & Pant, Deepak, 2020. "Towards highly efficient electrochemical CO2 reduction: Cell designs, membranes and electrocatalysts," Applied Energy, Elsevier, vol. 277(C).
    15. Magdziarz, Aneta & Mlonka-Mędrala, Agata & Sieradzka, Małgorzata & Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy A. & Brem, Gerrit & Niedzwiecki, Łukasz & Pawlak-Kruczek, Halina, 2021. "Multiphase analysis of hydrochars obtained by anaerobic digestion of municipal solid waste organic fraction," Renewable Energy, Elsevier, vol. 175(C), pages 108-118.
    16. Xia, Ao & Sun, Chihe & Fu, Qian & Liao, Qiang & Huang, Yun & Zhu, Xun & Li, Qing, 2020. "Biofuel production from wet microalgae biomass: Comparison of physicochemical properties and extraction performance," Energy, Elsevier, vol. 212(C).
    17. Xiao, Chao & Fu, Qian & Liao, Qiang & Huang, Yun & Xia, Ao & Chen, Hao & Zhu, Xun, 2020. "Life cycle and economic assessments of biogas production from microalgae biomass with hydrothermal pretreatment via anaerobic digestion," Renewable Energy, Elsevier, vol. 151(C), pages 70-78.
    18. Wang, Fuhuan & Xie, Heping & Liu, Tao & Wu, Yifan & Chen, Bin, 2020. "Highly dispersed CuFe-nitrogen active sites electrode for synergistic electrochemical CO2 reduction at low overpotential," Applied Energy, Elsevier, vol. 269(C).
    19. Pan, Qin & Tian, Xiaochun & Li, Junpeng & Wu, Xuee & Zhao, Feng, 2021. "Interfacial electron transfer for carbon dioxide valorization in hybrid inorganic-microbial systems," Applied Energy, Elsevier, vol. 292(C).
    20. Song, Wenlu & He, Yu & Huang, Rui & Li, Jianfeng & Yu, Yujie & Xia, Peng, 2023. "Life cycle assessment of deep-eutectic-solvent-assisted hydrothermal disintegration of microalgae for biodiesel and biogas co-production," Applied Energy, Elsevier, vol. 335(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921011077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.