IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v91y2016icp196-206.html
   My bibliography  Save this article

Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t-butanol and blue silica gel contents

Author

Listed:
  • Babaki, Mohadese
  • Yousefi, Maryam
  • Habibi, Zohreh
  • Mohammadi, Mehdi
  • Yousefi, Parisa
  • Mohammadi, Javad
  • Brask, Jesper

Abstract

The enzymatic production of biodiesel by methanolysis of canola oil was studied using self-made biocatalysts. Mesoporous SBA-15 nanoparticles were prepared, characterized and functionalized by 3-glycidyloxypropyl trimethoxysilane. Lipases from Candida antarctica (CALB), Thermomyces lanuginosus (TLL) and Rhizomucor miehei (RML) were covalently immobilized onto SBA-epoxy. Thermal stability and the influence of methanol concentration on the catalytic activity were also evaluated. Higher thermal stability and methanol tolerance for immobilized derivatives were achieved compared to the free enzyme. In an optimization study, the effect of water, t-butanol and blue silica gel as water adsorbent on the yield of FAME was considered. For the SBA-RML catalysed reaction, water had little effect in increasing FAME yield, but when 20 wt% water by substrate weight was added to the SBA-TLL catalysed reaction, the methyl ester content reached nearly complete conversion (98% FAME). t-Butanol had a great effect on yield, with almost complete conversion for SBA-RML and SBA-TLL. The effect of blue silica gel also was investigated. The immobilized TLL was quite stable and can be reused for 20 cycles without significant loss in activity (6%). RML and CALB also presented a good reusability, keeping 95% of their initial activities after 7 and 15 cycles of the reaction.

Suggested Citation

  • Babaki, Mohadese & Yousefi, Maryam & Habibi, Zohreh & Mohammadi, Mehdi & Yousefi, Parisa & Mohammadi, Javad & Brask, Jesper, 2016. "Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t-butanol and blue silica gel contents," Renewable Energy, Elsevier, vol. 91(C), pages 196-206.
  • Handle: RePEc:eee:renene:v:91:y:2016:i:c:p:196-206
    DOI: 10.1016/j.renene.2016.01.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116300532
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.01.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Xuebing & Qi, Feng & Yuan, Chongli & Du, Wei & Liu, Dehua, 2015. "Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 182-197.
    2. Meher, L.C. & Vidya Sagar, D. & Naik, S.N., 2006. "Technical aspects of biodiesel production by transesterification--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(3), pages 248-268, June.
    3. Srivastava, Anjana & Prasad, Ram, 2000. "Triglycerides-based diesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 111-133, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Samuel Santos & Jaime Puna & João Gomes, 2020. "A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production," Energies, MDPI, vol. 13(11), pages 1-19, June.
    3. Esmaeilnejad-Ahranjani, Parvaneh & Kazemeini, Mohammad & Singh, Gurvinder & Arpanaei, Ayyoob, 2018. "Effects of physicochemical characteristics of magnetically recoverable biocatalysts upon fatty acid methyl esters synthesis from oils," Renewable Energy, Elsevier, vol. 116(PA), pages 613-622.
    4. Xie, Wenlei & Huang, Mengyun, 2020. "Fabrication of immobilized Candida rugosa lipase on magnetic Fe3O4-poly(glycidyl methacrylate-co-methacrylic acid) composite as an efficient and recyclable biocatalyst for enzymatic production of biod," Renewable Energy, Elsevier, vol. 158(C), pages 474-486.
    5. Badoei-dalfard, Arastoo & Malekabadi, Saeid & Karami, Zahra & Sargazi, Ghasem, 2019. "Magnetic cross-linked enzyme aggregates of Km12 lipase: A stable nanobiocatalyst for biodiesel synthesis from waste cooking oil," Renewable Energy, Elsevier, vol. 141(C), pages 874-882.
    6. Kamel Ariffin, Maryam Farhana & Idris, Ani, 2022. "Fe2O3/Chitosan coated superparamagnetic nanoparticles supporting lipase enzyme from Candida Antarctica for microwave assisted biodiesel production," Renewable Energy, Elsevier, vol. 185(C), pages 1362-1375.
    7. Monteiro, Rodolpho R.C. & Arana-Peña, Sara & da Rocha, Thays N. & Miranda, Letícia P. & Berenguer-Murcia, Ángel & Tardioli, Paulo W. & dos Santos, José C.S. & Fernandez-Lafuente, Roberto, 2021. "Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?," Renewable Energy, Elsevier, vol. 164(C), pages 1566-1587.
    8. Kumar, Dilip & Das, Tapas & Giri, Balendu Shekher & Verma, Bhawna, 2020. "Preparation and characterization of novel hybrid bio-support material immobilized from Pseudomonas cepacia lipase and its application to enhance biodiesel production," Renewable Energy, Elsevier, vol. 147(P1), pages 11-24.
    9. Shahedi, Mansour & Yousefi, Maryam & Habibi, Zohreh & Mohammadi, Mehdi & As'habi, Mohammad Ali, 2019. "Co-immobilization of Rhizomucor miehei lipase and Candida antarctica lipase B and optimization of biocatalytic biodiesel production from palm oil using response surface methodology," Renewable Energy, Elsevier, vol. 141(C), pages 847-857.
    10. Mehrasbi, Mohammad Reza & Mohammadi, Javad & Peyda, Mazyar & Mohammadi, Mehdi, 2017. "Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil," Renewable Energy, Elsevier, vol. 101(C), pages 593-602.
    11. Babaki, Mohadese & Yousefi, Maryam & Habibi, Zohreh & Mohammadi, Mehdi, 2017. "Process optimization for biodiesel production from waste cooking oil using multi-enzyme systems through response surface methodology," Renewable Energy, Elsevier, vol. 105(C), pages 465-472.
    12. Cruz, Mariana & Pinho, Sílvia Cardinal & Mota, Ricardo & Almeida, Manuel Fonseca & Dias, Joana Maia, 2018. "Enzymatic esterification of acid oil from soapstocks obtained in vegetable oil refining: Effect of enzyme concentration," Renewable Energy, Elsevier, vol. 124(C), pages 165-171.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Anastopoulos & Ypatia Zannikou & Stamoulis Stournas & Stamatis Kalligeros, 2009. "Transesterification of Vegetable Oils with Ethanol and Characterization of the Key Fuel Properties of Ethyl Esters," Energies, MDPI, vol. 2(2), pages 1-15, June.
    2. Malhotra, Rashi & Ali, Amjad, 2019. "5-Na/ZnO doped mesoporous silica as reusable solid catalyst for biodiesel production via transesterification of virgin cottonseed oil," Renewable Energy, Elsevier, vol. 133(C), pages 606-619.
    3. Senthil Kumar, T. & Senthil Kumar, P. & Annamalai, K., 2015. "Experimental study on the performance and emission measures of direct injection diesel engine with Kapok methyl ester and its blends," Renewable Energy, Elsevier, vol. 74(C), pages 903-909.
    4. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    5. Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.
    6. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    7. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    8. De Corato, Ugo & De Bari, Isabella & Viola, Egidio & Pugliese, Massimo, 2018. "Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into high-value added products associated to some emerging markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 326-346.
    9. Jakeria, M.R. & Fazal, M.A. & Haseeb, A.S.M.A., 2014. "Influence of different factors on the stability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 154-163.
    10. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Zarei, Alireza & Noshadi, Iman, 2013. "Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model," Applied Energy, Elsevier, vol. 102(C), pages 283-292.
    11. Tacias-Pascacio, Veymar G. & Torrestiana-Sánchez, Beatriz & Dal Magro, Lucas & Virgen-Ortíz, Jose J. & Suárez-Ruíz, Francisco J. & Rodrigues, Rafael C. & Fernandez-Lafuente, Roberto, 2019. "Comparison of acid, basic and enzymatic catalysis on the production of biodiesel after RSM optimization," Renewable Energy, Elsevier, vol. 135(C), pages 1-9.
    12. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    13. Chakraborty, M. & Baruah, D.C., 2013. "Production and characterization of biodiesel obtained from Sapindus mukorossi kernel oil," Energy, Elsevier, vol. 60(C), pages 159-167.
    14. Lin, Lin & Ying, Dong & Chaitep, Sumpun & Vittayapadung, Saritporn, 2009. "Biodiesel production from crude rice bran oil and properties as fuel," Applied Energy, Elsevier, vol. 86(5), pages 681-688, May.
    15. Tooba Touqeer & Muhammad Waseem Mumtaz & Hamid Mukhtar & Ahmad Irfan & Sadia Akram & Aroosh Shabbir & Umer Rashid & Imededdine Arbi Nehdi & Thomas Shean Yaw Choong, 2019. "Fe 3 O 4 -PDA-Lipase as Surface Functionalized Nano Biocatalyst for the Production of Biodiesel Using Waste Cooking Oil as Feedstock: Characterization and Process Optimization," Energies, MDPI, vol. 13(1), pages 1-19, December.
    16. Khan, Shakeel A. & Rashmi & Hussain, Mir Z. & Prasad, S. & Banerjee, U.C., 2009. "Prospects of biodiesel production from microalgae in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2361-2372, December.
    17. Rathmann, Régis & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Targets and results of the Brazilian Biodiesel Incentive Program – Has it reached the Promised Land?," Applied Energy, Elsevier, vol. 97(C), pages 91-100.
    18. Banerjee, A. & Chakraborty, R., 2009. "Parametric sensitivity in transesterification of waste cooking oil for biodiesel production—A review," Resources, Conservation & Recycling, Elsevier, vol. 53(9), pages 490-497.
    19. Tariq, Muhammad & Ali, Saqib & Khalid, Nasir, 2012. "Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6303-6316.
    20. Manh, Do-Van & Chen, Yi-Hung & Chang, Chia-Chi & Chang, Ching-Yuan & Hanh, Hoang-Duc & Chau, Nguyen-Hoai & Tuyen, Trinh-Van & Long, Pham-Quoc & Minh, Chau-Van, 2012. "Effects of blending composition of tung oil and ultrasonic irradiation intensity on the biodiesel production," Energy, Elsevier, vol. 48(1), pages 519-524.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:91:y:2016:i:c:p:196-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.