IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p3013-d370279.html
   My bibliography  Save this article

A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production

Author

Listed:
  • Samuel Santos

    (CERENA—Center for Natural Resources, Instituto Superior Técnico, Lisbon University, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal)

  • Jaime Puna

    (CERENA—Center for Natural Resources, Instituto Superior Técnico, Lisbon University, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
    Chemical Engineering Department, Instituto Superior de Engenharia de Lisboa, Lisbon Polytechnic, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal)

  • João Gomes

    (CERENA—Center for Natural Resources, Instituto Superior Técnico, Lisbon University, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
    Chemical Engineering Department, Instituto Superior de Engenharia de Lisboa, Lisbon Polytechnic, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal)

Abstract

The continuous increase of the world’s population results in an increased demand for energy drastically from the industrial and domestic sectors as well. Moreover, the current public awareness regarding issues such as pollution and overuse of petroleum fuel has resulted in the development of research approaches concerning alternative renewable energy sources. Amongst the various options for renewable energies used in transportation systems, biodiesel is considered the most suitable replacement for fossil-based diesel. In what concerns the industrial application for biodiesel production, homogeneous catalysts such as sodium hydroxide, potassium hydroxide, sulfuric acid, and hydrochloric acid are usually selected, but their removal after reaction could prove to be rather complex and sometimes polluting, resulting in increases on the production costs. Therefore, there is an open field for research on new catalysts regarding biodiesel production, which can comprise heterogeneous catalysts. Apart from that, there are other alternatives to these chemical catalysts. Enzymatic catalysts have also been used in biodiesel production by employing lipases as biocatalysts. For economic reasons, and reusability and recycling, the lipases urged to be immobilized on suitable supports, thus the concept of heterogeneous biocatalysis comes in existence. Just like other heterogeneous catalytic materials, this one also presents similar issues with inefficiency and mass-transfer limitations. A solution to overcome the said limitations can be to consider the use of nanostructures to support enzyme immobilization, thus obtaining new heterogeneous biocatalysts. This review mainly focuses on the application of enzymatic catalysts as well as nano(bio)catalysts in transesterification reaction and their multiple methods of synthesis.

Suggested Citation

  • Samuel Santos & Jaime Puna & João Gomes, 2020. "A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production," Energies, MDPI, vol. 13(11), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:3013-:d:370279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/3013/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/3013/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gog, Adriana & Roman, Marius & Toşa, Monica & Paizs, Csaba & Irimie, Florin Dan, 2012. "Biodiesel production using enzymatic transesterification – Current state and perspectives," Renewable Energy, Elsevier, vol. 39(1), pages 10-16.
    2. Babaki, Mohadese & Yousefi, Maryam & Habibi, Zohreh & Mohammadi, Mehdi & Yousefi, Parisa & Mohammadi, Javad & Brask, Jesper, 2016. "Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t-butanol and blue silica gel contents," Renewable Energy, Elsevier, vol. 91(C), pages 196-206.
    3. Zhao, Xuebing & Qi, Feng & Yuan, Chongli & Du, Wei & Liu, Dehua, 2015. "Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 182-197.
    4. I-Ching Kuan & Chia-Chi Lee & Bing-Hong Tsai & Shiow-Ling Lee & Wei-Ting Lee & Chi-Yang Yu, 2013. "Optimizing the Production of Biodiesel Using Lipase Entrapped in Biomimetic Silica," Energies, MDPI, vol. 6(4), pages 1-13, April.
    5. Christopher, Lew P. & Hemanathan Kumar, & Zambare, Vasudeo P., 2014. "Enzymatic biodiesel: Challenges and opportunities," Applied Energy, Elsevier, vol. 119(C), pages 497-520.
    6. Szczęsna Antczak, Mirosława & Kubiak, Aneta & Antczak, Tadeusz & Bielecki, Stanisław, 2009. "Enzymatic biodiesel synthesis – Key factors affecting efficiency of the process," Renewable Energy, Elsevier, vol. 34(5), pages 1185-1194.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Ameen & Mushtaq Ahmad & Muhammad Zafar & Mamoona Munir & Muhammad Mujtaba Mujtaba & Shazia Sultana & Rozina . & Samah Elsayed El-Khatib & Manzoore Elahi M. Soudagar & M. A. Kalam, 2022. "Prospects of Catalysis for Process Sustainability of Eco-Green Biodiesel Synthesis via Transesterification: A State-Of-The-Art Review," Sustainability, MDPI, vol. 14(12), pages 1-38, June.
    2. Wancura, João H.C. & Brondani, Michel & dos Santos, Maicon S.N. & Oro, Carolina E.D. & Wancura, Guilherme C. & Tres, Marcus V. & Oliveira, J. Vladimir, 2023. "Demystifying the enzymatic biodiesel: How lipases are contributing to its technological advances," Renewable Energy, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pourzolfaghar, Hamed & Abnisa, Faisal & Daud, Wan Mohd Ashri Wan & Aroua, Mohamed Kheireddine, 2016. "A review of the enzymatic hydroesterification process for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 245-257.
    2. Budžaki, Sandra & Miljić, Goran & Sundaram, Smitha & Tišma, Marina & Hessel, Volker, 2018. "Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors," Applied Energy, Elsevier, vol. 210(C), pages 268-278.
    3. Budžaki, Sandra & Miljić, Goran & Tišma, Marina & Sundaram, Smitha & Hessel, Volker, 2017. "Is there a future for enzymatic biodiesel industrial production in microreactors?," Applied Energy, Elsevier, vol. 201(C), pages 124-134.
    4. Yaakob, Zahira & Mohammad, Masita & Alherbawi, Mohammad & Alam, Zahangir & Sopian, Kamaruzaman, 2013. "Overview of the production of biodiesel from Waste cooking oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 184-193.
    5. Guldhe, Abhishek & Singh, Poonam & Kumari, Sheena & Rawat, Ismail & Permaul, Kugen & Bux, Faizal, 2016. "Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst," Renewable Energy, Elsevier, vol. 85(C), pages 1002-1010.
    6. Cédric Decarpigny & Abdulhadi Aljawish & Cédric His & Bertrand Fertin & Muriel Bigan & Pascal Dhulster & Michel Millares & Rénato Froidevaux, 2022. "Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol," Energies, MDPI, vol. 15(9), pages 1-30, May.
    7. Tacias-Pascacio, Veymar G. & Torrestiana-Sánchez, Beatriz & Dal Magro, Lucas & Virgen-Ortíz, Jose J. & Suárez-Ruíz, Francisco J. & Rodrigues, Rafael C. & Fernandez-Lafuente, Roberto, 2019. "Comparison of acid, basic and enzymatic catalysis on the production of biodiesel after RSM optimization," Renewable Energy, Elsevier, vol. 135(C), pages 1-9.
    8. Gutiérrez-Arnillas, Esther & Álvarez, María S. & Deive, Francisco J. & Rodríguez, Ana & Sanromán, M. Ángeles, 2016. "New horizons in the enzymatic production of biodiesel using neoteric solvents," Renewable Energy, Elsevier, vol. 98(C), pages 92-100.
    9. Xie, Wenlei & Huang, Mengyun, 2020. "Fabrication of immobilized Candida rugosa lipase on magnetic Fe3O4-poly(glycidyl methacrylate-co-methacrylic acid) composite as an efficient and recyclable biocatalyst for enzymatic production of biod," Renewable Energy, Elsevier, vol. 158(C), pages 474-486.
    10. Monteiro, Rodolpho R.C. & Arana-Peña, Sara & da Rocha, Thays N. & Miranda, Letícia P. & Berenguer-Murcia, Ángel & Tardioli, Paulo W. & dos Santos, José C.S. & Fernandez-Lafuente, Roberto, 2021. "Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?," Renewable Energy, Elsevier, vol. 164(C), pages 1566-1587.
    11. Gómez-Castro, F.I. & Gutiérrez-Antonio, C. & Romero-Izquierdo, A.G. & May-Vázquez, M.M. & Hernández, S., 2023. "Intensified technologies for the production of triglyceride-based biofuels: Current status and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    12. Aguieiras, Erika C.G. & de Barros, Daniele S.N. & Fernandez-Lafuente, Roberto & Freire, Denise M.G., 2019. "Production of lipases in cottonseed meal and application of the fermented solid as biocatalyst in esterification and transesterification reactions," Renewable Energy, Elsevier, vol. 130(C), pages 574-581.
    13. Tooba Touqeer & Muhammad Waseem Mumtaz & Hamid Mukhtar & Ahmad Irfan & Sadia Akram & Aroosh Shabbir & Umer Rashid & Imededdine Arbi Nehdi & Thomas Shean Yaw Choong, 2019. "Fe 3 O 4 -PDA-Lipase as Surface Functionalized Nano Biocatalyst for the Production of Biodiesel Using Waste Cooking Oil as Feedstock: Characterization and Process Optimization," Energies, MDPI, vol. 13(1), pages 1-19, December.
    14. Dutra, Luciana da Silva & Costa Cerqueira Pinto, Martina & Cipolatti, Eliane Pereira & Aguieiras, Erika Cristina G. & Manoel, Evelin Andrade & Greco-Duarte, Jaqueline & Guimarães Freire, Denise Maria , 2022. "How the biodiesel from immobilized enzymes production is going on: An advanced bibliometric evaluation of global research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    15. Zhang, Zhijin & Du, Yingjie & Kuang, Geling & Shen, Xuejian & Jia, Xiaotong & Wang, Ziyuan & Feng, Yuxiao & Jia, Shiru & Liu, Fufeng & Bilal, Muhammad & Cui, Jiandong, 2022. "Lipase-Ca2+ hybrid nanobiocatalysts through interfacial protein-inorganic self-assembly in deep-eutectic solvents (DES)/water two-phase system for biodiesel production," Renewable Energy, Elsevier, vol. 197(C), pages 110-124.
    16. Zhong, Le & Jiao, Xiaobo & Hu, Hongtong & Shen, Xuejian & Zhao, Juan & Feng, Yuxiao & Li, Conghai & Du, Yingjie & Cui, Jiandong & Jia, Shiru, 2021. "Activated magnetic lipase-inorganic hybrid nanoflowers: A highly active and recyclable nanobiocatalyst for biodiesel production," Renewable Energy, Elsevier, vol. 171(C), pages 825-832.
    17. Silvia Cesarini & F. I. Javier Pastor & Per M. Nielsen & Pilar Diaz, 2015. "Moving towards a Competitive Fully Enzymatic Biodiesel Process," Sustainability, MDPI, vol. 7(6), pages 1-20, June.
    18. Zulfiqar, Anam & Mumtaz, Muhammad Waseem & Mukhtar, Hamid & Najeeb, Jawayria & Irfan, Ahmad & Akram, Sadia & Touqeer, Tooba & Nabi, Ghulam, 2021. "Lipase-PDA-TiO2 NPs: An emphatic nano-biocatalyst for optimized biodiesel production from Jatropha curcas oil," Renewable Energy, Elsevier, vol. 169(C), pages 1026-1037.
    19. Adewale, Peter & Dumont, Marie-Josée & Ngadi, Michael, 2015. "Recent trends of biodiesel production from animal fat wastes and associated production techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 574-588.
    20. Badoei-dalfard, Arastoo & Malekabadi, Saeid & Karami, Zahra & Sargazi, Ghasem, 2019. "Magnetic cross-linked enzyme aggregates of Km12 lipase: A stable nanobiocatalyst for biodiesel synthesis from waste cooking oil," Renewable Energy, Elsevier, vol. 141(C), pages 874-882.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:3013-:d:370279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.